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Executive summary

Report overview

This report from Global Partnership on Artificial Intelligence (GPAI)’s Pandemic Resilience
project follows its 2023 report and is focused on practically implementing the concepts pre-
viously developed by the project team. Indeed, the 2023 report laid the foundation for this
research while presenting recommendations on various approaches that aligned pandemic
modelling with responsible Artificial Intelligence (AI). The 2023 report showcased a calibra-
tion framework approach and an ensemble modelling concept, focusing on the added value
and pertinence of both consistent calibration and ensembling; that is, ensuring models are
consistent in shared parameter values while using the strengths of different models and creat-
ing a digital “task force”. The combination of the calibration framework and ensemble model
encourages and enables modellers from different locations and backgrounds to work to-
gether by using standardised versions of their work.

Although there has been substantial modelling activity of Non-Pharmaceutical Interventions
(NPIs) for COVID-19, this activity has been fragmented across different countries, with mixed
access and sharing of data andmodels. This report documents a prototype calibration frame-
work – based on a multi-objective genetic algorithm – that simultaneously calibrates multiple
models across different locations and ensures consistent parameter values across models.
The resulting, calibrated models are then combined using an ensemble modelling concept
that provides more accurate model results than any of the models do individually. Hence,
consistent models for multiple locations are created and can be shared easily with these lo-
cations. In addition, diverse perspectives from the models can provide more accurate results
for each location through the ensemble model.

Initial case study results show that long runs of the calibration framework improves model
accuracy by approximately 60%. They also show the efficacy of the calibration framework
over manual calibration. However, artefacts from the underlying models still present chal-
lenges for calibration at the beginning of a modelling horizon. Initial case study results for
the ensemble model show reasonable improvements for prediction accuracy in locations with
large numbers of COVID-19 cases, but the inclusion of models that work well for lower case
numbers needs to be explored to fully investigate the benefits and limitations of ensemble
modelling.

Pandemic Resilience AI-calibrated ensemble of models 1



Key findings

• Standardisation of inputs/outputs for models is important for enabling new models to
be easily added to the calibration framework and ensemble model.

• Ensemble models provide robustness and diverse perspectives when combining mul-
tiple models for making predictions. Ensemble models also provide further robustness
by adapting how they combine the underlying models to improve prediction accuracy.

• By carrying out case studies across different countries, satisfying results have been
obtained for multiple different locations and insights from all locations are used during
calibration.

• Automated calibration via long runs of the calibration framework provide more accurate
results than time consuming manual calibration.

• Ensemble models provide estimates of prediction uncertainty, a key innovation in this
report that enhances the robustness of the resulting predictions.

• The combination of calibration framework and ensemble modelling enables informed,
data-driven decision making by policymakers across multiple locations in a way that
aligns with responsible AI principles. This enhances the democratisation of pandemic
modelling, digital technology and AI.

Recommendations

• Standardise datasets and models

– Standardise datasets across locations to: 1) enable models developed in one
location to be used in other locations; and 2) enable data from multiple locations
to be used to calibrate models. Enhance the ability of data and models to be
shared.

• Extend and refine the calibration framework and ensemble modelling and inte-
grate them into pandemic preparedness initiatives/organisations

– Add models predicting economic impacts of NPIs. Complete further testing and
refinement of both the calibration framework and ensemble modelling. Consult
with pandemic preparedness initiatives/organisation to ascertain how the frame-
work could be 1) integrated with systematic gathering of disease data for monitor-
ing disease spread; and 2) the ensemble model could be integrated with disease
spread prediction and public health response. Add other models as appropriate
to ensure diversity of perspective in response and robustness of modelling to dif-
ferent disease progression.

• Test the efficacy of the calibration framework and ensemble modelling within a
tabletop exercise

Pandemic Resilience AI-calibrated ensemble of models 2



– Pilot the use of the calibration framework and ensemble modelling to provide so-
lutions to policymakers from different locations in a tabletop simulation of a pan-
demic outbreak.

Pandemic Resilience AI-calibrated ensemble of models 3



Glossary

AI An Artificial Intelligence (AI) system is “a machine-based system that can, for a given
set of human-defined objectives, make predictions, recommendations, or decisions
influencing real or virtual environments.” (OECD, 2019). 1, 3, 8

API Application Programming Interface (API) defines the inputs and outputs to an applica-
tion, i.e., piece of software. 7

CTMC A Continuous Time Markov Chain (CTMC) is “a continuous stochastic process in
which, for each state, the process will change state according to an exponential ran-
dom variable and then move to a different state as specified by the probabilities of a
stochastic matrix.” (Chen and Mao, 2021). 2, 8

Cyber-Physical The Cyber-Physical model in this report is based on the plant-controller
concept from Cyber-Physical Systems Lee, 2008 – see 3.2.2 for details.. 8, 17–21, 26,
28, 34, 37–39, 41, 47, 49

DevOps Development Operations (DevOps) is end-to-end automation of development and
delivery of software. (Ebert et al., 2016). 50

GA Mitchell, 1996 states that no rigorous definition of Genetic Algorithms (GAs) is “accepted
by all in the evolutionary-computation community that differentiates GAs from other
evolutionary computation methods. However, it can be said that most methods called
“GAs” have at least the following elements in common: populations of chromosomes,
selection according to fitness, crossover to produce new offspring, and random muta-
tion of new offspring”. 26

GPAI The Global Partnership on Artificial Intelligence (GPAI) is “a multi-stakeholder initiative
which aims to bridge the gap between theory and practice on AI by supporting cutting-
edge research and applied activities on AI-related priorities.” (GPAI, 2021). 1, 2, 8

LSTM A Long Short-Term Memory network (LSTM) is a recurrent neural network approach
that uses “a novel, efficient, gradient based method” (Hochreiter and Schmidhuber,
1997). 8

ML Machine Learning (ML) is a discipline of artificial intelligence (AI) and computer science
that uses data and algorithms to allow AI to learn in the same way that people do,
gradually improving its accuracy. (Beyerer, Kühnert, and Niggemann, 2019). 13
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MOGA Multi-Objective Genetic Algorithms (MOGAs) (Fonseca and Fleming, 1993) use a
standard genetic algorithm approach combined the multi-objective concept of non-
dominated solutions when selecting individual solutions that are selected for subse-
quent generations of solutions. 8

NPI Non-Pharmaceutical Intervention (NPIs) are “actions, apart from getting vaccinated and
taking medicine, that people and communities can take to help slow the spread of
illnesses.” (CDC, 2022). 1, 9

OxCGRT Oxford Covid-19 Government Response Tracker (OxCGRT) “provides a system-
atic cross-national, cross-temporal measure of how government responses have evolved
over the full period of the disease’s spread.” (Hale et al., 2021). 7

pymoo Pymoo is “a multi-objective optimization framework in Python” (Kalyanmoy Deb et
al., 2002) that offers state of the art single- and multi-objective optimization algorithms
– see 3.4.1 for details.. 27, 28, 32

RIO Residual Estimation with I/O Kernels (RIO) is an ensemble modelling approach from
Qiu, Meyerson, and Miikkulainen, 2020 – see §4 for more detail.. 8

SEIR Susceptible-Exposed-Infected-Recovered (SEIR) processes are compartmental mod-
els used for epidemiology with four compartments (a.k.a. state): 1) Susceptible: indi-
viduals that may become infected if they come into contact with infectious individuals;
2) Exposed: individuals that are infected, but have not become infectious yet; 3) : In-
fectious: individuals that are infected and may spread the disease, i.e., are infectious;
4) : Recovered: individual that have recovered, are no longer infectious and (in many
cases) have immunity to the disease. 9

SVM Support Vector Machine (SVM), a class of algorithms for classification, regression and
other applications. (Cristianini and Ricci, 2008). 13
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Key Acronyms

AI Artificial Intelligence. 1–3, 8, 9, 13, 47, 48, 51–54, 57, Glossary: AI

API Application Programming Interface. 7, 15, 47, Glossary: API

CDC Centers for Disease Control and Prevention. Glossary: CDC

CFR Case Fatality Rate. Glossary: CFR

CTMC Continuous Time Markov Chain. 2, 8, 17, 19–21, 26, 28, 34, 37–39, 41, 46–49,
Glossary: CTMC

DevOps Development Operations. 50, 51, Glossary: DevOps

GA Genetic Algorithm. 26, 27, 36, Glossary: GA

GPAI Global Partnership on Artificial Intelligence. 1, 2, 8, 46, 53, 57, Glossary: GPAI

ICU Intensive Care Unit. 19, 21

LSTM Long Short-Term Memory network. 8, 13, 20, 21, 26, 28, 34, 37, 39, 48, 49,Glossary:
LSTM

MAE Mean Absolute Error. Glossary: MAE

ML Machine Learning. 3, 13, 48, Glossary: ML

MOGA Multi-Objective Genetic Algorithm. 8, 15, 27, 32–34, Glossary: MOGA

NPI Non-Pharmaceutical Intervention. 1, 2, 9, 10, 14, 17–19, 22, 24, 25, 49–54, Glossary:
NPI

OxCGRT Oxford Covid-19 Government Response Tracker. 7, 12, 24, 47, 48, 50, Glossary:
OxCGRT

RIO Residual Estimation with I/O Kernels. 8, 32, 35, 42–47, 49, 51, Glossary: RIO

RMSE Root Mean Square Error. Glossary: RMSE

SEIR Susceptible-Exposed-Infected-Recovered. 9, 10, 14, Glossary: SEIR

SVM Support Vector Machine. 13, Glossary: SVM
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1 Introduction

Coronavirus Disease 2019 (COVID-19), caused by the novel severe acute respiratory syn-
drome coronavirus 2 (SARS-CoV-2), was a rapidly evolving global emergency that placed
significant strain on healthcare systems throughout the world (Gallo Marin et al., 2021). In
addition to severe health consequences across the globe, it had a substantial negative influ-
ence on various fields of human endeavor, including education, business, global travel, and
especially health care. These economic consequences of the COVID-19 pandemic highlight
the need for creative scenario planning techniques that balance the provision of effective
public health interventions with the need for economic security on a local and international
scale (Youn, Geismar, and Pinedo, 2022). This report discusses the difficulty of reacting to
catastrophic public health events, which can lead to significant mortality and economic loss,
and presents a model-based approach to aid decision-making that leverages existing work
on epidemic modelling and standardising public data.

The COVID-19 pandemic provides a good opportunity to evaluate how policymakers tackle
the issue of how to respond locally to a global pandemic as well as balancing different fac-
tors in their response. First, it highlights the necessity of frequent, standardised gathering of
disease data for effective disease monitoring such as in the One World-One Health model
(Hayman et al., 2023), as well as the need to exchange knowledge rapidly in order to better in-
form national and international decision-making. Creating public, standardised datasets is a
key part of disease tracking/monitoring and knowledge sharing. This project uses the Oxford
Covid-19 Government Response Tracker (OxCGRT) dataset that was acquired, standard-
ised, and curated at Oxford University (Hale et al., 2021). Knowledge sharing, including tools
with embedded expertise such as calibrated models, is also key for supporting those coun-
tries that do not have the necessary resources to develop models to inform their pandemic
response. There was a plethora of modelling activity both regarding the spread of COVID-
19 and how this spread was affected by various response options (see §2.1 for a summary).
However, there were also challenges in sharing the knowledge and models developed be-
tween countries (see §2.2 for a summary). Rapid customisation of existing models to local
data was rare during the pandemic (for one example of a locally customizable, template-
running, web-based model, see Aguas et al., 2020). Such efforts were hampered by incon-
sistent data availability and lack of multiple modeling approaches. This project addresses this
gap by combining standardised data with a standardised Application Programming Interface
(API) for modelling, meaning that multiple models can be customised for different locations
rapidly, and that these models and locations will use shared parameters consistently. In addi-
tion, models with multiple perspectives such as pandemic spread and economic performance
can be used with the same integrated dataset to consider multiple metrics of performance
for a given response policy. An ensemble of pandemic spread models is used within this
report and the addition of (one or more) economic models is outlined as future work. Other

Pandemic Resilience AI-calibrated ensemble of models 7



models, such as those on the effect of the pandemic on mental health and the inclusion of
interventions to promote (physical and mental) health could also be included to provide a
more holistic approach to pandemic response policy.

Pandemics disturb normal social, economic, (physical and mental) health care, and govern-
mental activities, so the pandemic response must be carefully planned and implemented.
Governments need to consider, for example, trade-offs between a centralized versus decen-
tralized response strategies based on demographics, geography, and other factors. Cen-
tralized responses may appear to improve control of public health interventions but may
discourage community participation and voluntary compliance with pandemic-related restric-
tions. Trade-offs between health outcomes and economic performance must also be care-
fully evaluated when planning a pandemic response.

This report is the second of two progress reports from the Global Partnership on Artificial In-
telligence (GPAI) Pandemic Resilience project. The previous report (GPAI, 2023) presented
recommendations on various approaches that aligned pandemic modelling with responsi-
ble Artificial Intelligence (AI). The research presented in this report provides an important
step in the provision of ensembles of standardised models that can be rapidly customised,
calibrated, and deployed to support pandemic responses across the globe.

This report is structured as follows. Following this introduction, Section 2 reviews the neces-
sary background on COVID-19 modelling methods and efforts.

Section 3 describes the automatic calibration methodology using a Multi-Objective Genetic
Algorithm (MOGA). The emphasis is on the simultaneous calibration of input parameters
across multiple models and locations to account for uncertainty, provide a calibrated ensem-
ble model, and include different perspectives such as economic performance. This section
provides a detailed account of the calibration framework and the standardized interface for
combining and comparing three distinct but complementary modelling approaches, namely:
(1) a Cyber-Physical model; (2) a Long Short-Term Memory network (LSTM) model, which is
a form of neural network; and (3) a stochastic model using Continuous Time Markov Chains
(CTMCs). Defining a standard for inputs, outputs, and calibration, including data, enabled
models to use the common parameters and data, make comparable predictions, and be
calibrated simultaneously.

Section 4 describes the methodology for combining multiple models into an ensemble. Un-
certainty in the predictions is estimated using Residual Estimation with I/O Kernels (RIO)
method, and these estimates are then used to form a combined prediction as a mixture of
Gaussians.

In section 5, the experiments and results for the calibration framework are presented through
two case studies. The first one considers Aotearoa | New Zealand, Kenya, Sweden, and the
United Kingdom from March to June 2020. The second case study calibrates models to
compare the results of Aotearoa | New Zealand and Sudan. Comparisons with manually
calibrated models and across the two case studies are also described.

Pandemic Resilience AI-calibrated ensemble of models 8



Following the case studies, the report concludes in Section 6 with reflections on the research
into the calibration framework and suggestions for future directions for this research. We
consider the contributions of this research, namely the value of standardisation, how the use
of ensemble models provides robustness and diversity, how informed data-driven decision-
making is enabled, how pandemic preparedness is supported, and how the research’s ap-
proach aligns with responsible AI principles. We then analyze limitations in the research so
far and provide ideas to address difficulties. We next consider how this research could be
used in practice via three use cases for decision-makers. We conclude both the section and
the report as a whole by conclude this section by exploring how the contributions, limitations
and use cases motivate future research using standardisation, the calibration framework,
and ensemble modelling.

2 Background

This section summarises relevant background literature on COVID-19 modelling, knowledge
sharing, ensemble models, and standardised data/models.

2.1 COVID-19 modelling

Table 2.1 summarises the different COVID-19 modelling approaches used throughout the
world. Note that this table is not supposed to be comprehensive, but shows the breadth and
diversity of COVID-19 initiatives globally. Although there was a significant level of activity
throughout the world, with some common approaches, there was not a coordinated approach
globally, i.e., the activity was very fragmented across countries and even across regions
within countries. In addition, many developing countries had limited capacity to createmodels
for their own populations.

One of the key outcomes from COVID-19 modelling was the ability of models to inform how
the use of Non-Pharmaceutical Interventions (NPIs) would affect the spread of COVID-19.
Models that included the effect of NPIs are summarised here along with the method for in-
cluding NPI effects.

Liu, Thomadsen, and Yao (2020) highlighted the network effects and social distancing ef-
fects in the spread rate of COVID-19. They have used a modified version of the Susceptible-
Infected-Recovered (SIR) model of the spread rate under different social distance levels.
Chowdhury et al. (2020) used a standard Susceptible-Exposed-Infected-Recovered (SEIR)
compartmental model to assess the impact of dynamic community-based NPIs, to control
COVID-19 pandemic in 16 diverse economic regions: Western Europe (The Netherlands,
Belgium), South America (Chile, Colombia), North America (Mexico), Africa (South Africa,
Nigeria, Ethiopia, Tanzania, Uganda), South Asia (India, Bangladesh, Pakistan, Sri Lanka),
West Asia (Yemen), and the Pacific (Australia). According to the results, dynamic suppres-
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sion interventions will assist countries with reducing mortality rate and preventing critical care
overload, reducing global economic burden and giving them time to develop clinical preven-
tive strategies. Sarkar, Khajanchi, and Nieto (2020) developed a SEIR model to predict the
spread of COVID-19 outbreak in 17 provinces of India. The model emphasized the effective-
ness of social distancing and contact tracing between uninfected and infected individuals.

Banholzer et al. (2021) used a semi-mechanistic Bayesian hierarchical model to investigate
the effectiveness of NPIs on the number of new infections across 20 countries (i.e., the United
States, Canada, Australia, Austria, Belgium, Denmark, Finland, France, Germany, Greece,
Ireland, Italy, Luxembourg, the Netherlands, Portugal, Spain, Sweden, and the United King-
dom, Norway, and Switzerland). The bans on large gatherings reduced transmission consid-
erably. The effect of stay-at-home orders and work-from-home orders were comparatively
small. Brauner et al. (2021) estimated the NPI effectiveness on COVID-19 transmission in 41
countries using data-driven, cross-country modeling (Bayesian hierarchical model). Closing
both schools and universities, gathering bans (limiting gatherings to 10 people or less), and
face-to-face business closures were the most effective. The stay-at-home orders were less
effective.

Pandemic Resilience AI-calibrated ensemble of models 10
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2.2 Sharing knowledge/models

Giabbanelli et al. (2021) shared challenges, and suggested solutions, in the development of
COVID-19 modeling through assessment performed by modelers in six COVID-19 research
teams. Despite variation in the models, they encountered common challenges, including
unknown or publicly unavailable data, along with the lack of public presence which limits
a research team’s impact. Therefore, the importance of rapidly emerging centralized data
repositories was emphasized as a way to address this challenge. Moreover, the importance
of relationships and communications between modelers, policymakers, and the general pub-
lic was highlighted. According to Bertozzi et al. (2020), other challenges in COVID-19 mod-
eling include uncertainty in parameters, length and severity of social distancing, and out-
comes depending on the data or type of model that has been used. Aguas et al. (2020)
established the COVID-19 Modelling (CoMo) Consortium and a dynamic infectious disease
model to overcome the inaccessibility of COVID-19 mathematical models to policymakers
in low-income and middle-income countries. This approach addressed the global need for
technology, training, and effective communication.

Cosgriff, Ebner, and Celi (2020), mentioned lack of patient-level COVID-19 publicly avail-
able datasets. In this regard, having a unifying multinational, universally shared COVID-19
electronic health record would be necessary. The Medical Information Mart for Intensive
Care (MIMIC), containing 50,000 patient admissions to Beth Israel Deaconess Medical Cen-
ter (BIDMC), is an example of open data sharing for a wider geography of BIDMC’s hospital
(A. Johnson, Pollard, and Roger, 2016). Gao et al. (2020) proposed different integrated plat-
form models for aiding data sharing and management of COVID-19 pandemic information at
national and international levels and to overcome challenges such as data decentralization,
standardization, and globalization. They arrived at these platform models after reviewing ex-
isting approaches, tools, and software in this domain. Their integrated approach will facilitate
the global transfer of datasets and collaboration between researchers, scientists, and institu-
tions to aid the prevention, and treatment of COVID-19 as well as research. Hale et al. (2021)
introduced a global, publicly available dataset, OxCGRT, which includes 19 pandemic policy
indicators related to closure and containment, health, and economic policies and covers 184
countries.

Given that the existence of a variety of models makes it difficult for public officials and govern-
ment to select a model to use, one potential approach is the use of an ensemble of models
that works across multiple locations and that uses standard global parameter values for con-
sistency. Sherratt et al. (2023) showed ensemble forecasts maximize the predictive perfor-
mance of COVID-19 cases and deaths in every forecast across Europe (32 countries). The
median ensemble methods outperformed those based on means. Paireau et al. (2022) first
evaluated 19 predictors and 12 individual models, then built an ensemble model averaging
across the models, outperforming the baseline model to anticipate COVID-19 healthcare de-
mand in France. The ensemble model performed best on average with epidemiological and
mobility predictors as the most promising predictors to improve the forecast. Cramer et al.
(2022) first evaluated the performance of 27 individual models to forecast COVID-19 deaths
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in the US. According to the results, their ensemble model outperformed all the stand-alone
models that contributed to it, providing a reliable and accurate forecast.

2.3 Ensemble models for AI and ML

In this section, we discuss how ensemble AI and Machine Learning (ML) models can improve
the performance of COVID modeling. Rahman et al. (2021) carried out a literature review
of ML approaches for COVID-19. They identified four different ML application methods to
combat COVID-19, all focusing on improving decision-making processes in a healthcare con-
text for physicians, and policymakers, as well as identifying potentially infected people. They
highlight the applicability of ML as a useful tool for analyzing, screening, tracking, forecasting,
and predicting trends and characteristics of COVID-19.

Shastri et al. (2021) used a deep-LSTMensemblemodel using convolutional and bi-directional
LSTM. Themodel was able to forecast COVID-19 confirmed cases and deaths (for onemonth
ahead) in India with the accuracy of 97.59 % and 98.88% respectively. This emphasizes the
utility of AI for estimating the spread of COVID-19, especially in countries with large popula-
tions like India which need accurate predictions of COVID-19 spread, even when there is a
shortage of healthcare workers to monitor how the disease is spreading, e.g., in the middle of
a pandemic. Maaliw et al. (2021) showed that their proposed ensemble ML model combining
Autoregressive integrated moving averages (ARIMA) and stacked long short-term memory
networks (S-LSTM) outperforms each of the single models to forecast COVID-19 infections
and deaths with an average accuracy of 90.73%. The model was validated by analyzing time
series data of four countries including the Philippines, United States, India, and Brazil.

Tayarani-Najaran (2022) proposed an evolutionary algorithmwith a surrogate ensemble learn-
ing algorithm to optimize government policies against the spread of the virus. The ensemble
ML algorithm consists of ten base learning algorithms to improve performance. An Sup-
port Vector Machine (SVM) algorithm is built to predict the accuracy of each learning algo-
rithm. The resulting model is used as a fitness function for the evolutionary algorithm. Jin
et al. (2022) proposed a novel data-driven TCN-GRU-DBN-Q-SVM ensemble hybrid model
based on Temporal Convolutional Networks (TCN), Gated Recurrent Units (GRUs), Deep
Belief Networks (DBNs), Q-learning, and SVM models for COVID-19 infection prediction.
The model provides satisfactory results which were verified against three national infec-
tion datasets from the UK, India, and the US to ensure the generalization of the proposed
model. Ibrahim, Tulay, and Abdullahi (2023) proposed an ensemble ML approach called
ANN ensemble (ANN-E) and SVM ensemble (SVM-E) for the purpose of predicting COVID-
19 pandemic. Three standalone ML models including artificial neural network (ANN), adap-
tive neuro-fuzzy inference system (ANFIS), and SVM were used. The proposed ANN-E and
SVM-E approaches outperformed all the other standalone methods to predict daily COVID-
19 cases in 10 African countries.
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2.4 Standardised data, standardised models, and au-
tomated model calibration

Sass et al. (2020) introduced a uniform, standard dataset called “German Corona Consensus
Dataset” (GECCO) to support the interoperability of a COVID-19 dataset by using interna-
tional terminologies and health IT standards.

Annan and Hargreaves (2020) calibrated an epidemic SEIR model to daily reported case
numbers in the UK using a Markov Chain Monte Carlo algorithm to perform Bayesian pa-
rameter estimation. The results show a superior performance of the calibrated model for
forecasting the early growth of the COVID-19 outbreak in the UK. This method can also es-
timate the effectiveness of lockdown policies.Nastasi et al. (2022) have applied SIRD (sus-
ceptible S, infected I, recovered R, and dead D) and SIRDV (vaccinated compartment V )
models with calibration on real a dataset of cases of the COVID-19 spread in Great Britain
(GBR) and Israel (ISR). The results highlight the effectiveness of vaccination campaigns to
reduce the number of infected people and deaths.

3 Automatic calibration using a multi-objective
genetic algorithm

P. S. Oh and S. J. Oh (2011) state that “a model plays the roles of describing, explaining
and predicting natural phenomena and communicating scientific ideas to others.” Models
take data as input and use this data to generate new data as output. Models usually have
some input parameters that help define how a model works. When dealing with an epidemic
or pandemic, input data takes the form of how the pandemic has been spreading so far,
e.g., current case numbers, along with decisions on strategies, e.g., NPIs, to put in place to
combat disease spread. Output data defines how well the selected strategies have worked in
terms of slowing down or stopping disease spread. Many models also have input parameters
that help determine how the model transforms the input data to output data. The accuracy
of a model, i.e., how well the model’s output data matches corresponding data fro the real
world is affected by the model’s input parameters. The process of model calibration involves
changing a model’s input parameters so that the output data produced by the model – for a
given set of input data – is as accurate as possible in terms of matching real world output
data (according to a pre-defined measure of accuracy).

Calibrating models, including Covid spread models, is often challenging to do manually
(Hazelbag et al., 2020; Kong, McMahon, and Gazelle, 2009). The relationship between
model input parameters and model accuracy, i.e., how close the model outputs are to known
values, is often complex and, hence, not intuitive. Automatic calibration of models is also not
straightforward as the underlying optimisation problem is usually non-linear, often with inte-
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ger decision variables and almost always with multiple local optima, i.e., multiple, disparate
input parameter configurations that result in reasonably accurate models (Q. Wang, 1997).
The properties of automatic model calibration problemsmean that metaheuristic approaches,
such as genetic algorithms, are an appropriate approach to automatically calibration (Kong,
McMahon, and Gazelle, 2009).

In this report, we present a MOGA approach to calibrating Covid spread models. Given the
number of possible input parameters that need to be calibrated, this is a difficult problem
for any solution approach including MOGA. However, as discussed in §3.1, by calibrating
multiple models and locations simultaneously, we get more data to inform input parameter
calibration for those parameters that are consistent across models and/or locations. After
discussing the MOGA-based calibration concept in §3.1, we present the ensemble of models
being calibrated in §3.2 before defining a standard API for the models and describing the
MOGA set-up in detail in §3.3 and §3.4 respectively. We then discuss how model predictions
are integrated into a unified prediction with confidence intervals in §4. We describe how a
model of economic performance can be added to the ensemble and associated calibration
framework in §6.4.3 before finishing with a description of how various solutions, i.e., sets of
input parameters, are evaluated in §3.5.

3.1 Calibration framework concept

Figure 3.1 represents how different models (in this figure Model 1 and Model 2) were devel-
oped and calibrated to (input and output) data in different locations (in this figure Locations A
and B respectively). However, models were not often calibrated across multiple locations so,
for example, Model 1 would not be able to be used in Location B without further calibration
and possibly more development. In addition, parameters across the different models may
differ, even if they represent the same value, since models were developed and calibrated
independently. For example, the reproduction number of the alpha variant of COVID-19 may
be different in Model 1, calibrated for Location A, and Model 2, calibrated for Location B.

By developing and calibrating models independently in different locations, some shared
knowledge is not used appropriately to the detriment of the transferability and veracity of
the models. Consider the example of the reproduction number of COVID-19 variant alpha,
denoted Rα

0 . When Model 1 is calibrated using the data from Location A, Rα
0 may be affected

by an increased population density and estimate a higher Rα
0 than that from Model 2 which

is being calibrated in Location B with a lower population density. Both estimates would work
well for their respective models in the respective calibration locations, but transferring Model
2 to Location A would likely result in estimates of population spread that are too low (due to
a low Rα

0 ) with the reverse occurring when transferring Model 1 to Location B.

Two factors need to be addressed in this example. First, Rα
0 should be consistent across

both models and locations. Location and/or model-specific changes to spread should be
specified as separate parameters, i.e., location (specific) parameters or location and model
(specific) parameters. In this example, population density parameters for each location could
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be used within the two models to adjust the “effective reproduction number” of the alpha
Covid-19 variant so that Rα

0 is consistent across both locations and models. Second, the
calibration of parameters should happen simultaneously so that consistent values for global
parameters, that work best for all models in all locations, can be found as can consistent
location parameters, i.e. parameters that should be consistent across different models such
as the location’s population density.

Figure 3.2 depicts a process that calibrates parameters consistently across locations and
models as appropriate and that simultaneously calibrates all models, as an ensemble, for
each location with input and output data for each location shared across all models and the
accuracy of the ensemble, i.e., all the models, used to inform the calibration process.

Figure 3.1: Models developed and calibrated individually

To achieve the approach depicted in figure 3.2, the input and output parameters for the mod-
els need to be standardised so that consistent calibration of the input parameters can be
implemented and the ensemble accuracy of the models can be evaluated within this cal-
ibration. To determine these standards, we first summarise the models being considered
in this research and identify which inputs are global, location (specific) and location/model
(specific).

3.2 COVID-19 spreadmodelswithin the calibration frame-
work

For the ensemble calibration method presented in this research, three existing models for
COVID-19 spread were considered. These three models were previously summarised by
GPAI (2021). The revised summaries presented in this section have a change in notation
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Figure 3.2: Models developed and calibrated as part of an ensemble

to make input parameters consistently labeled across the models and as a precursor for the
input parameters standard coming in §3.3.1.

3.2.1 Effective Reproduction Number

Both the Cyber-Physical model – see §3.2.2 – and the CTMC model – see §3.2.3 – use
the concept of “effective” reproduction number, i.e., the reproduction number for Covid-19
given: 1) the base reproduction numbers for the Covid-19 variants; 2) the proportion of each
of the variants present in the population; 3) the level that each NPI is being used at; and 4) a
function/model for calculating how the NPIs affect reproduction of each of the variants. In
this initial version of ensemble model calibration, we use a simple model where:

Rv
eff = Rv

0 −
∑

n∈NPIs

τ(v, n, l(n, d))

where:

Rv
eff,d = effective reproduction number of variant v on day d;
Rv

0 = base reproduction number of variant v;
τ(v, n, l) = effective coefficient on transmission for variant v when NPI n is at level l;
l(n, d) = level of NPI n on day d.
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3.2.2 Cyber-Physical Model

Ro et al. (2020) used the plant-controller concept from Cyber-Physical Systems (Lee, 2008;
Alur, 2015) with the plant representing the epidemiological model and the controller rep-
resenting the NPIs being deployed to mitigate spread. The parameters for the plant and
controller components of the model are described next.

3.2.2.1 Plant

The global parameters used by the (revised) plant are as follows:

• The reproduction numbers for each COVID-19 variant that are used within an estimated
effective transmission model (which is location-specific):

– Rα
0 – the reproduction number of the α variant;

– Rδ
0 – the reproduction number of the δ variant;

– Ro
0 – the reproduction number of the o variant.

• The stages of Covid-19: S – Susceptible, E – Exposed, P – Presymptomatic; I1 –
Infected and contagious; I2 – Infected and not contagious; R – Recovered; and D –
Deceased.

• The transition rates are the reciprocal of the expected time in the “from” stages

– From Exposed to Pre-Symptomatic;

– From Pre-Symptomatic to Infected;

– From Infected and contagious to Recovered – note that the Cyber-Physical method
does not include the Infected and not contagious stage.

• The relative infectiousness when Pre-Symptomatic (ϵ).

The location (specific) parameters for the plant are as follows:

• The proportion of Covid-19 variants present in the population, pα, pδ, po and are as-
sumed to be constant for the time horizon being modelled.

• The effective transmission function/model, see §3.2.1. This model converts the repro-
duction numbers for each variant into effective production numbers given the NPI levels
that are in place:

– Rα
eff,d for α;

– Rδ
eff,d for δ; and

– Ro
eff,d for o.
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• The case fatality ratios:

– When there are available Intensive Care Unit (ICU) beds;

– When there aren’t available ICU beds.

• The population size and the initial numbers of the population in each stage.

• The horizon of the model in terms of start and finish dates and step size (a.k.a. interval)
in days.

• The proportion of cases that require ICU care.

• The number of available ICU beds.

The location and model (specific) parameters are:

• The logging rate – how often the plant (epidemiological model) logs results such as the
number of cases and number of deaths.

3.2.2.2 Controller

In the (revised, standardised) Cyber-Physical model the decisions that are controlled for the
Plant – by the Controller – have been replaced by the NPI schedule. The NPI schedule
informs:

1. The effective reproduction number;

2. The reproduction number of isolated cases; and

3. The testing rate.

All 3 values are determined by model-based parameters – see 1.3.1.2 – and a model that
converts these parameters into values from the NPI schedule – see §3.2.1.

3.2.3 Continuous Time Markov Chain

The (revised, standardised) Continuous Time Markov Chain (CTMC) model uses similar
states to the Cyber-Physical model (GPAI, 2021, Appendix A.3). However, the states from
§3.2.2.1 are extended to include the ward stay in hospital as shown in Figure 3.3, i.e., the
extra stages of Covid-19: W1 – Hospital ward before any ICU stay; W2 – Hospital ward after
an ICU stay; and V – ICU. Note that Reff,d is determined by the model for the effect the NPI
schedule has on the effective reproduction number of Covid-19 – see §3.2.1. The CTMC
uses these extended stages and associated transition values to determine the number of
individuals in each stage on each day in the modelling horizon.
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Figure 3.3: The states in the CTMC model for Covid-19 spread

Note that, in addition to most of the location (specific) parameters used by the Cyber-Physical
model, the CTMC model uses extra location (specific) parameters, namely:

• Proportion of hospitalised (ward) patients that go to ICU;

• Relative infectiousness of patients in a ward;

• Relative infectiousness of patients in an ICU;

• Proportion of patients that go to hospital;

• Estimated length of stay in hospital;

• Estimated length of stay in ICU.

Unlike the Cyber-Physical model, the CTMC model assumes that everyone who is symp-
tomatic will be tested. Note that this assumption was based on the freely available testing in
Aotearoa | New Zealand and will likely not hold in all locations.

3.2.4 LSTM Models

The LSTM models consist of the v1 LSTM and the v2 Conditional LSTM. They are statistical
models that learn disease spread patterns from historical data. Using machine learning,
the models are trained to predict the time series of cases in previous data, provided with
context data including the intervention plans and the recent history of cases. In the scenarios
described in the report, the models are provided with similar context information and tasked
to extend their predictions to the unseen scenario pandemic period. Thus the models apply
knowledge gained from historical data to predict the likely progression of the pandemic in a
real scenario.

The two models utilize LSTMs (Graves, 2012), which are a standard machine learning prac-
tice used to learn statistical associations on sequences. Internally, the LSTMs maintain a
memory that is modified sequentially as the LSTM processes each day of the pandemic
scenario. The LSTM has operations to reset its memory and to write new information to its
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memory. It uses this memory to predict the number of cases as a statistical variable. During
training, the prediction errors are utilized via backpropagation to modify what information is
written to the memory and when it is written and reset, along with how the memory is asso-
ciated with the model predictions. In this way, LSTMs learn salient statistical patterns from
the input data, consisting of the context, and they learn to associate these patterns with the
likely progression of the pandemic.

Two such statistical models were introduced in the previous report. The first model, the v1
LSTM, is a small statistical model designed to learn important patterns without overfitting, a
common danger with larger models. Several innovations went into the design to produce the
v2 Conditional LSTM model:

1. The architecture of the model was revised so that later layers became conditioned on
the intervention plans so that these plans can have more complex nonlinear interaction
with the predicted pandemic progression.

2. A new preprocessing component was added, so that the model became more robust
to noise and variation in the baseline number of cases between countries.

3. The model was revised to be deeper and wider, allowing for more complex statistical
associations to be learned.

To train the models, all available data prior to the scenario period is used. Thus the scenario
period represents unseen data, consistent with the realistic scenario of needing to make
predictions in an unseen context while utilizing all available data.

3.3 Standardising the COVID-19 models

In order for all models to be calibrated within the same framework, the interface, i.e., the
input data and parameters and the output data, must be the same, i.e., standardised (even if
some models choose not to use some data/parameters). One of the key contributions of this
calibration framework is the standardisation of inputs/outputs across 3 different modelling
approaches.

3.3.1 Input standard

The input standard is used by all 3 of the models included in this research, namely the LSTM
model – see §3.2.4, the Cyber-Physical model – see §3.2.2, and the CTMC model – see
§3.2.3. The LSTMmodel only uses the defined input data for each location – see the standard
1.2.2. The Cyber-Physical and CTMC models only use the most recent data from each
location, i.e., the current number of cases and deaths. However, they both have model-
specific parameters. Some of these parameters are shared, e.g., the reproduction numbers
for the COVID-19 variants – see the standard 1.1.1.2.1, the number of ICU beds in each
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location – see the standard 1.2.1.7.1, but some are only relevant for a particular models,
e.g., extra stages for COVID-19 patients in hospital – see standard 1.2.1.3.

The full definition of the input standard is given in Table 3.1. These input standards are
provided to the calibration framework using a JSON file. For example, the NPI list and the
max NPI level and variant list are shown in Figure 3.4. Some of the more complex input
standards are described in greater detail in §3.3.2 following Table 3.1.

Table 3.1: Input Standard Definitions

1
Inputs

1.1
Global
Inputs

1.1.1 Global
Input
Parameters

1.1.1.1 List of NPIs
1.1.1.1.1 NPI name/code

1.1.1.1.2 Max NPI level
(integer, currently 4)

1.1.1.2 List of
variants (e.g., alpha,
delta and omicron)

1.1.1.2.1 Estimated
“true” reproductive
numbers for variant

1.1.1.3 Hierarchy of
stages of Covid
infection

1.1.1.3.1 Stage
name/symbol
1.1.1.3.2 Transition rates
between stage of Covid
infection (dependent on
the ICU being under or
over capacity, IFR0 and
IFR1 respectively)
1.1.1.3.3 Relative
infectiousness of
Presymptomatic with
respect to Infectious

1.1.1.4 Countries
modeled

List of countries to
produce model outputs
for

1.2
Location
Inputs

1.2.1
Location
Input
Parameters

1.2.1.1 Proportion of
variants

The proportion of each
of the variants at the
locations, listed by
country

1.2.1.2 Effective
transmission rates

1.2.1.3 Extra stages
of Covid infection for
location’s health
system

Pandemic Resilience AI-calibrated ensemble of models 22



Table 3.1: Input Standard Definitions (continued)

1.2.1.4 Estimates of
total population size
and number of
population in each
stage (including extra
stages from 1.2.1.3)

1.2.1.5 Time periods
for model horizon

1.2.1.6 NPI schedule
- level of NPI for
each time period in
the model horizon
1.2.1.7 Health
system parameters
(lists for each
country)

1.2.1.7.1 Number of ICU
beds
1.2.1.7.2 Proportion of
hospitalised (ward)
patients that go to ICU
1.2.1.7.3 Relative
infectiousness of patients
in a ward
1.2.1.7.4 Relative
infectiousness of patients
in an ICU
1.2.1.7.5 Proportion of
patients that go to
hospital
1.2.1.7.6 Estimated
length of stay in hospital
1.2.1.7.7 Estimated
length of stay in ICU

1.2.2
Location
Input Data

1.2.2.1 Time periods
for historical data

1.2.2.2 Case
numbers for each
time period for the
previous 3 months-1
year depending on
availability
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Table 3.1: Input Standard Definitions (continued)

1.2.2.3 Deaths for
each time period for
the previous 3
months-1 year
depending on
availability

1.2.2.4 Level of NPI
for each historical
time period

1.3
Model
Specific
(a.k.a.
Model
Inputs)

1.3.1 Model
Input
Parameters

1.3.1.1 List of models
being used

1.3.1.2 Table of
values related to
NPIs

• Coefficients of
effective
transmission

• Coefficients for
transmission of a
confirmed case

• Coefficients for
testing rates

1.3.1.3 Output
locations for the
models

3.3.2 Detailed descriptions of complex input standards

This subsection contains a more detailed description the more complex input standards, the
numbering is consistent with the standard presented in Table 3.1.

1.1.1.1.2 Max NPI level (integer, currently 4)

See Oxford Covid-19 Government Response Tracker (OxCGRT) codebook. In the GitHub
repository under data/time series, there are CSV files for each NPI. Instead of Economic
effects, the tracker monitored countries that used selected economic policies which include:

E1_income support

E2_debt/contract relief

E3_fiscal measures

E4_international support
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1 {
2 "global": {
3 "parameters": {
4 "npi_list": {
5 "code": "1.1.1.1",
6 "list": [
7 "C1_School closing",
8 "C2_Workplace closing",

...

1 "V3_Vaccine Financial Support (summary)",
2 "V4_Mandatory Vaccination (summary)"
3 ],
4 "max_npi_level": {
5 "code": "1.1.1.1.2",
6 "value": 4
7 }
8 },
9 "variant_list": {
10 "code": "1.1.1.2",
11 "list": [
12 "alpha",
13 "delta",
14 "omicron"
15 ]
16 },
17 "reproductive_numbers": {
18 "code": "1.1.1.2.1",
19 "rates": [{
20 "variant": "alpha",
21 "R0": 2.79,

...
Figure 3.4: Snippet from example JSON in §A.3

Countries that did not implement economic policies are assigned 0. Flags are used to deter-
mine if a policy applied to a proportion of a population or not. However, economic policies
and flags were not used because it was assumed that it did not have a significant impact on
confirmed cases and deaths in the countries that were being studied. Predicting and con-
trolling confirmed cases and deaths were the priority at this time. However, using the flags
and economic effects may have provided a more accurate view. It is helpful to take note of
how some NPIs have cross impacts and as a result of combining NPIs may lead to double
changes to predictions.

1.2.1.2 Effective transmission rates This would be a model or function that estimates the
effective transmission rates between Covid stages at a particular location taking into account
the transmission rate between stages and the levels of NPIs in place. It needs to be consis-
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tent across models.

3.3.3 Output standard

The output standard is also used by all 3 of the models included in this research, namely the
LSTM model – see §3.2.4, the Cyber-Physical model – see §3.2.2, and the CTMC model –
see §3.2.3. It defines what outputs eachmodel should produce, e.g., case number estimates,
and also the output data that is available for calibrating the models.

As with the input standard – see §3.3.1, the full definition of the output standard is given in
Table 3.2. These output standards are also provided to the calibration framework using a
JSON file.

Table 3.2: Output Standard Definitions

2
Outputs

2.1
Location
Outputs

2.1.1
Location
Output
Estimates

2.1.1.1 Location information

2.1.1.2 Time periods for model horizon

2.1.1.3 Case number estimates for each
time period in the model horizon

2.1.1.4 Recovered number estimates for
each time period in the model horizon

2.1.1.5 Death estimates for each time
period in the model horizon

2.1.2
Location
Output Data

2.1.2.1 Time periods for historical data

2.1.2.2 Case numbers for each time period
for the previous 3 months-1 year
depending on availability

2.1.2.3 Deaths for each time period for the
previous 3 months-1 year depending on
availability

2.1.2.4 Level of NPI for each historical time
period

3.4 Setting up the Multi-Objective Genetic Algorithm

Genetic Algorithms (GAs) maintain a set of solutions and look to improve the objective func-
tion values of these solutions. Each solution is referred to an individual or chromosome,
made up of distinct pieces called genes. Holland’s first version of GAs assumes genes to
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be binary digits (Holland, 1992), but later versions included a wider range of gene types.
Mapping links solutions to their corresponding chromosome and GA operators create new
chromosomes, hence solutions, and the GA evolves the set of solutions, a.k.a. population,
using their objective functions values, a.k.a. fitness. GA selection techniques vary based on
the fitness values used with the most commonly used selection methods including propor-
tional, ranking, and tournament.

For MOGAs, each solution provides a vector of objective values that are not dominated by
any other solution, i.e., that are non-dominated (Konak, Coit, and Smith, 2006).GAs are
customised to addressmultiple objectives by utilizing specialized fitness functions that enable
a population of solutions to evolve in a way that maintains the non-dominated property of a
population. In this research we use the pymoo package (Blank and K. Deb, 2020) which is
based on the NSGA-II algorithm (Kalyanmoy Deb et al., 2002).

3.4.1 Pymoo

This section is summarised from the pymoo documentation (Blank and K. Deb, 2020).

The general formulation of a multi-objective optimization problem is given as:

min fm(x) m = 1, . . . ,M

gj(x) ≤ 0 j = 1, . . . , J

hk(x) = 0 k = 1, . . . , K

xL
x ≤ xi ≤ xU

i i = 1, . . . , N

x ∈ Ω

where Ω is the set of valid values for x.

The example shown by Blank and K. Deb (2020) is:

min f1(x) = 100(x2
1 + x2

2)

max f2(x) = 1(x1 − 1)2 − x2
2)

g1(x) = 2(x1−0.1)(x1−0.9) ≤ 0

g2(x) = 20(x1−0.4)(x1−0.6) ≥ 0

−2 ≤ x1 ≤ 2

−2 ≤ x2 ≤ 2

x ∈ R2

For the calibration framework, each solution x consists of values for a subset of the input
parameters from the input standard – see §3.3.1 – as described by a calibration standard next
in §3.4.2. No explicit constraints are used, but both proportions and population parameters
are adjusted to sum to 1 and the total population respectively before being used within the
model ensemble for the objective function, a.k.a. fitness, calculations. Within the NSGA-II
algorithm, the objective function values are calculated from the solution set, the ensemble
of models, and the model performance metrics as follows. First, each solution is mapped
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to its corresponding input parameters. For those models in which the model performance
will change with the input parameters, the models are run with these new input parameters.
The new performance metrics are calculated for each model and the ensemble metrics are
then calculated. The final ensemble metrics are returned to the NSGA-II algorithm as the
objective function values for the given solution, i.e., input parameters.

Next is a summary of the calibration framework problem solved using pymoo with represen-
tative bounds provided for the given parameters (the reproduction number for the α and δ

variants respectively).

min f1(x) = ensemble metric from daily cases prediction ranking
min f2(x) = ensemble metric from daily deaths prediction ranking

2.29 ≤ Rα
0 ≤ 3.29

4.58 ≤ Rδ
0 ≤ 5.58

...
x ∈ set of feasible input parameters

Note that feasibility of the input parameters includes considerations such as proportions must
add to 1, initial estimates of the amount of the population in each disease stage, e.g., that
are presymptomatic, must sum to match the total population.

In this research, the LSTM models are not affected by changes in input parameters because
they use historical data only. Both the Cyber-Physical and CTMC models are affected by
changes in input parameters and must be run for each solution identified by the NSGA-II
algorithm. The performance metrics considered are the ranking of each model for predicting
new daily cases and predicting new daily deaths. The average across all the models for
each metric is used as the ensemble metric for given input parameters. If no prediction –
hence ranking – is available, e.g., the ensemble does not include that model in the average
calculation. This is the case for the LSTM models which don’t predict new daily deaths.

Hence, the calibration framework searches the input parameters space to find the set of pa-
rameters that best predict new daily cases and new daily deaths, where best is defined in a
multi-objective way, i.e., the prediction of one metric does not improve without a correspond-
ing deterioration in the other metric.

As mentioned previously, the implementation of the calibration framework uses a standard,
similar to the implementation of the ensemble of models, so that it can be reasonably easily
extended in the future. This standard is presented next.

3.4.2 Calibration standard

The calibration standard is used so that input parameters being calibrated, within the calibra-
tion framework using the ensemble of models, are well defined and can be easily expanded
in the future. The full standard is defined in table 3.3 and is a subset of the input parame-
ters along with some extra information on how the parameters are allowed to change during

Pandemic Resilience AI-calibrated ensemble of models 28



calibration, i.e., how the input parameter space is defined.

1
Inputs

1.1
Global
Inputs

1.1.1 Global
Input
Parameters

1.1.1.2 List of
variants (e.g., alpha,
delta and omicron)

1.1.1.2.1Estimated “true”
reproductive numbers for
variant
Bounded, so value
calibration will search
between [lower bound,
upper bound], e.g.,

α [2.29, 3.29]

δ [4.58, 5.58]

o [9, 10]

1.1.1.3.3 Relative
infectiousness of
Presymptomatic with
respect to Infectious

Bounded, usually [0, 1]

1.2
Location
Inputs

1.2.1
Location
Input
Parameters

1.2.1.1 Proportion of
variants

The proportion of each
of the variants at the
locations
Bounded,usually [0, 1],
but must sum to 1

1.2.1.2 Effective
transmission rates

The function won’t
change during
calibration, but
parameters that define it
– see 1.3.1.2 – will
change

1.2.1.4 Estimates of
total population size
and number of
population in each
stage (including extra
stages from 1.2.1.3)

The total population
won’t change, but the
initial numbers in each
stage are bounded, but
must sum to = the total
population. Note that the
bounds are set using the
change proportion
parameter, a calibration
run parameter, but all
initial number values may
be scaled down to
ensure the total is = the
total population
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1.2.1.7 Health
system parameters
(lists for each
country)

1.2.1.7.1 Number of ICU
beds
Bounded, e.g., [510,
530] for Aotearoa | New
Zealand
1.2.1.7.2 Proportion of
hospitalised (ward)
patients that go to ICU
Bounded, within [0, 1]
1.2.1.7.3 Relative
infectiousness of patients
in a ward
Bounded, within [0, 1]
1.2.1.7.4 Relative
infectiousness of patients
in an ICU
Bounded, within [0, 1]
1.2.1.7.5 Proportion of
patients that go to
hospital
Bounded, within [0, 1]
1.2.1.7.6 Estimated
length of stay in hospital
Bounded, e.g., [18, 25]
for Aotearoa | New
Zealand
1.2.1.7.7 Estimated
length of stay in ICU
Bounded, e.g., [15, 21]
for Aotearoa | New
Zealand

1.3
Model
Specific
(a.k.a.
Model
Inputs)

1.3.1 Model
Input
Parameters

1.3.1.2 Table of
values related to
NPIs

• Coefficients of
effective
transmission

Minimum and maximum
values are bounded and
linear interpolation used
for values in between
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• Coefficients for
transmission of a
confirmed case

Bounded, with a
“plus/minus” value to
ensure they don’t change
too much from initial
estimates

• Coefficients for
testing rates

Bounded, also with a
“plus/minus” value to
ensure they don’t change
too much from initial
estimates

Table 3.3: Calibration Standard Definitions

Figure 3.5 shows a snippet of the JSON file that implements the calibration standard within
the calibration framework, including a typical bounded parameter (R0 for the α variant) and
a more customised parameter (the effective transmission coefficients which are allowed to
vary by ±10% during calibration).

1 "global": {
2 "parameters": {
3 "reproductive_numbers": {
4 "code": "1.1.1.2.1",
5 "rates": [
6 {
7 "variant": "alpha",
8 "R0": { "type": "bounds", "lb" : 2.29, "ub": 3.29 }
9 },

...

1 "model": {
2 "effective_transmission_coeffs": {
3 "code": "1.3.1.2",
4 "file": { "type": "custom", "pm": 0.1 },

...
Figure 3.5: Snippet from example JSON in §A.5

The code snippet in figure 3.6 shows how the calibration standard information is used to
set up the solution space for the calibration framework. The setup for both typical bounded
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parameters (in the first snippet) and customised ± parameters (in the second snippet) are
shown.

A code snippet that shows how a calibration framework MOGA problem is defined from the
input and calibration standard JSON files and then the NSGA-II algorithm is configured to
solve the problem is given in figure 3.7. The size of the solution set (NPOP), the number
of new parameter sets (NOFF), and number of generations (NGEN) can be defined. One
other key configuration value is the change proportion (of the total population) allowed for
the initial number of the population in each disease stage. The closer this is to 1.0, the more
flexibility for these parameters, but also the larger the overall solution space (and hence more
generations required to search the space).

Using the calibration framework code, the pymoo package and the JSON files, an ensemble
of models can be calibrated across multiple locations simultaneously. The rest of this section
discusses the efficacy of a calibrated ensemble of models for making predictions before two
case studies of the calibration framework in use are given in §5.

3.5 Evaluating solutions

The models produce a predicted number of cases for each day in the scenario period. These
numbers are compared against the true number of cases for the same day. To quantify the
quality of the predictions, we use the standard mean average error (MAE) metric, which
measures the deviation of the model predictions from the truth. There is a Jupyter notebook
available, produced with the last report, which does this error computation and also produces
plots of the model predictions and ground truth number of cases and deaths.

4 Ensembling the models

This report has described diverse modeling approaches incorporated in an ensemble. But
how is the multitude of produced predictions converted into usable insights? To help sum-
marize the information we introduce an ensemble prediction, thus integrating the various
sources of predictions into a summary prediction.

This report introduces the RIO ensemble method. A description of ensembles was provided
in a previous GPAI report (GPAI, 2023), and in this report we improve upon the previous work
using Residual Estimation with I/O Kernels (Qiu, Meyerson, and Miikkulainen, 2020). These
models offer two capabilities in service of ensemble integration: (1) error correction and (2)
uncertainty estimation.

This section begins by reviewing related work in uncertainty estimation and then details the
implementation of the RIO-based ensembles. In Section 5.3 a description of the results of
ensembling is provided, documenting how error correction and uncertainty estimation affect
the results.

Pandemic Resilience AI-calibrated ensemble of models 32



� �
1 # 5a. If the variable is changing using bounds
2 if key[-1] in ["bounds", "integer"]:
3 # Get the "reduced" key (for use in adding to the temp JSONs)
4 reducedKey = key[0:len(key) - 2]
5
6 # Update the number of parameters
7 numParms += 1
8 # Get the lower and upper bound values from the calibration JSON file
9 lb = get_from_dict(calibrateJSON, reducedKey + ['lb'])
10 if key[-1] == "bounds":
11 ub = get_from_dict(calibrateJSON, reducedKey + ['ub'])
12 else:
13 # Increase the interval by 1 for integer bounds
14 ub = get_from_dict(calibrateJSON, reducedKey + ['ub']) + 1
15 # Add the key to the list
16 if key[-1] == "integer":
17 reducedKey = ["integer"] + reducedKey
18 keys.append(reducedKey)
19 # Add the lower and upper bound values
20 xll.append(lb)
21 xul.append(ub)� �

...� �
1 # Save a list of confirmed transmission coefficients which are
2 # ("conf_coeff", country, npi, variant, level) pairs
3 self.confcoeffs = []
4 # Loop over the countries
5 for country in countries:
6 for npi in npis:
7 for variant in variants:
8 for l in range(maxLevels + 1):
9 df = coeffsDf.loc[(coeffsDf['CountryName'] == country) &
10 (coeffsDf['NPI_Oxford'] == npi) &
11 (coeffsDf['Variant'] == variant),
12 "conf_coeff_%d" % l]
13 if df.shape[0] == 1:
14 val = df.item()
15 if not np.isnan(val):
16 # There is some effect for this NPI
17 # Set the bounds for the maximum coeff country & NPI
18 lb = max(0.0, val * (1 - pmValue))
19 ub = min(1.0, val * (1 + pmValue))
20 # Create a reduced key for use during evaluation
21 reducedKey = ["conf_coeff", country, npi, variant, l]
22 # Add this key to the list of initial count keys
23 self.confcoeffs.append((country, npi, variant, l))
24 # Increase the number of parameters being calibrated
25 numParms += 1
26 # Add the key
27 keys.append(reducedKey)
28 # Add the bounds
29 xll.append(lb)
30 xul.append(ub)� �

...
Figure 3.6: Code snippet for setting up variable bounds used within MOGA
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...� �
1 if __name__ == "__main__":
2 LOGGER.info(f"=====> STARTED CALIBRATION RUN")
3 LOGGER.info("Calibration hyper parameters: pop = {NPOP}, off = {NOFF}, gen = {NGEN}, chg = {

POP_PROP_INC}")
4
5 # Create a CalibationProblem with input and calibration JSON files
6 problem = CalibrationProblem("examples/instance%d/input%d.json" % (INSTANCE, INSTANCE),
7 "examples/instance%d/calibrate%d.json" % (INSTANCE, INSTANCE))
8
9 # Set up the NSGA-II algorithm to solve the CalibrationProblem
10 algorithm = NSGA2(
11 # How many parameter sets are being considered in each iteration
12 pop_size=NPOP,
13 # How many new parameter sets to create each iteration
14 n_offsprings=NOFF,
15 # Other NSGA-II parameters affected how new solutions are created (sampling),
16 # how much existing solutions interact to create new solutions (crossover),
17 # how much existing solutions change (mutation) and whether duplicates are
18 # allowed
19 sampling=FloatRandomSampling(),
20 crossover=SBX(prob=0.9, eta=15),
21 mutation=PM(eta=20),
22 eliminate_duplicates=True
23 )
24
25
26 # Set how many iterations to run for
27 termination = get_termination("n_gen", NGEN)
28
29 # Solve the CalibrationProblem using NSGA-II
30 res = minimize(problem,
31 algorithm,
32 termination,
33 seed=1,
34 save_history=True,
35 verbose=True)� �

...
Figure 3.7: Code snippet for creating MOGA instance

4.1 Overview of uncertainty estimation

Uncertainty estimation refers to evaluating how much trust should be placed in the produced
predictions of a model given what is known about the model and the context it is making
predictions. Many strategies have been proposed to address the question of knowing what
a model knows, including ensemble methods (Gawlikowski et al., 2023). Indeed, ensembles
of networks are able to detect out-of-distribution data points, which are more prone to error,
by reporting a higher predictive uncertainty (Lakshminarayanan, Pritzel, and Blundell, 2017).

Crucial to the success of these combination strategies is the diversity between models, thus
motivating our work to apply a variety of modeling techniques. It is well-documented in ma-
chine learning that combining multiple models improves performance (Mohammed and Kora,
2023). In our work, some models (the LSTM and Conditional LSTM) model the statistical
progression of pandemics, while other models (the CTMC and Cyber-Physical models) in-
corporate domain-specific knowledge. Therefore, the kinds of biases these models will make
when applied to the data are very diverse, leading to a strong final ensemble.
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4.2 The residual estimation approach

The panel of expert systems represented in the ensemble produces a variety of different
predictions, so how do we know who to trust and when? To integrate the predictions from
eachmodel in the ensemble, first an uncertainty estimate is derived for eachmodel prediction
so that models that are more prone to error produce a more diffuse contribution to the final
ensemble result. The process is illustrated in Figure 4.1.

Figure 4.1: The ensemble is formed using a collection of predictive models along with corre-
sponding RIO models. In the top flow, the RIO models are calibrated on training data to learn
the error patterns of their respective models. In the bottom flow, the uncertainty estimates
are used to construct confidence intervals for each model, which are then integrated into a
final ensemble prediction.

To form the uncertainty estimates, residual estimation via Gaussian processes is applied
(Qiu, Meyerson, and Miikkulainen, 2020). These estimators learn in what situations a model
performs well or poorly and assign a confidence estimate appropriately. They do this by form-
ing a statistical model of the error residuals, constituting not only a corrective estimate of the
residual, which can be used to adjust the model prediction and reduce error, but also an es-
timate of the uncertainty in that residual estimate, indicating the confidence of the prediction
given the current context.

To train the RIO models, several rollout predictions are produced on the training data prior to
the scenario. Given these rollouts, the RIO model is trained to produce uncertainty estimates
for each model. These uncertainty estimates take the form of Gaussian distributions. The
final ensemble prediction is then represented as a mixture of Gaussians distribution, taking
into account the contributions and uncertainty of each model.
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5 Experiments and results

To test the calibration framework described in §3, two case studies were considered. For
each case study, the standard input, output, and calibration files were defined. Further pa-
rameters for the GA used for calibration were also defined across both case studies, namely:

1. for a short calibration run:

• Five individuals in the solution population, i.e., five sets of input parameters were
tested at each generation of the GA;

• Two offspring were created, i.e., two new sets of input parameters were created
and added to the five sets in the population before the selection of the fittest indi-
viduals reduced the population back to five;

• Three generations were run, so the creation of offspring and selection of the fittest
was performed three times; and

• 10% of the total population was used as the maximum amount of change. i.e.,
defined bounds for the GA, from initial values in each disease stage;

and

2. for a long calibration run: 20 individuals, 15 offspring, 500 generations, 50% of total
population allowed for change from initial values, hence more solutions and change
within each generation and more generations for the solutions to evolve and improve.

For each case study, there are four sets of plots:

1. The seven-day average of predicted new cases;

2. The rankings of the models (i.e., given models with specific parameters) for predicting
new cases;

3. The seven-day average of predicted new deaths; and

4. The rankings of the models for predicting new deaths.

For the rankings, lower is better as it uses mean average error to rank the models. For
the predictions, getting as close as possible to the actual data, labeled “Ground Truth” is
desirable.

Case study 1 considers Aotearoa | New Zealand, Kenya, Sweden, and the United Kingdom
fromMarch to June of 2020 – see §5.1. Case study 2 considers Aotearoa | New Zealand and
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Sudan from June to September 2020. These case studies were chosen by the authors as
they were deemed interesting in terms of the diversity of the countries and their COVID-19
experience as well as being familiar to some of the authors.

5.1 Case study 1: Aotearoa | NewZealand, Kenya, Swe-
den and the United Kingdom

Figures 5.1 and 5.2 compare the prediction of new cases for the (Aotearoa | New Zealand,
Kenya, Sweden, United Kingdom) case study between a preliminary, short calibration run (5
individuals, 2 offspring, 3 generations, 10% of the total population allowed for change from
initial values) and a more thorough, long calibration run (20 individuals, 15 offspring, 500
generations, 50% of the total population allowed for change from initial values). Note that
the Cyber-Physical and CTMC algorithm labels have a unique code appended that links to
the input parameters being used. Figure 5.2 zooms in to a smaller time period from Figure
5.1. Figure 5.3 gives rankings for the case predictions for each of the models over time.
In Appendix A.1, Figures A.1 and A.2 show similar metrics, i.e., predictions and rankings
respectively, for predicting new deaths overall and in each country.

For overall new cases, Cognizant/PredictorType.LSTM shows the best performance for both
short and long calibrations. In April, all the models (except LSTM) with short calibration
overestimated the daily new cases. The performance improves from the middle of May –
see Figure 5.1a. However, the models for long calibration underestimate the overall new
cases – see Figure 5.1b.

For each of the countries considered, the pattern is similar to the overall pattern, namely that
the models other than the LSTM models over-predict new cases at the start of the horizon
before dropping close to the Ground Truth. The key difference between the short and long
runs is the magnitude of the over-prediction. Figure 5.2 shows there is a significant decrease
in the over-prediction by all the Cyber-Physical and CTMC models with more calibration. In
all plots, the Cyber-Physical models perform better than the CTMC models.

Figure 5.3 confirms these observations with the LSTM models outperforming the Cyber-
Physical models which outperform the CTMC models although that ranking stabilises which
shows the mean average errors are dropping to 0.

As can be seen in Appendix A.1, when predicting new deaths, the results are quite different.
First, the LSTM models have not been configured to predict new deaths so they drop out
of consideration. However, the model performance – see Figure A.1, hence rankings – see
Figure A.2, are reversed with the CTMC models providing more accurate predictions than
the Cyber-Physical models. As with the new cases, the long calibration run produces better
results, i.e., more accurate predictions. This is expected as these models have been better
calibrated.
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(a) Overall new cases – short (b) Overall new cases – long

(c) Kenya new cases – short (d) Kenya new cases – long

(e) Aotearoa | NZ new cases – short (f) Aotearoa | NZ new cases – long

(g) Sweden new cases – short (h) Sweden new cases – long

(i) United Kingdom new cases – short (j) United Kingdom new cases – long

Figure 5.1: Comparing new cases metric: short calibration run (5 individuals, 2 offspring, 3
generations, change proportion = 0.1) on the left, long calibration run (20 individuals, 15 off-
spring, 500 generations, change proportion = 0.5) on the right. Note that the Cyber-Physical
and CTMC algorithm labels have a unique code appended that links to the input parameters
being used
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(a) Overall new cases – short, May 5 to June
16

(b) Overall new cases – long, May 5 to June
16

Figure 5.2: Comparing new cases metric: short calibration run for May 5 to June 16 on the
left, long calibration run for the same time period on the right.

5.1.1 Manual calibration

Figure 5.4 shows the metrics for the Aotearoa | New Zealand case study, with Cyber-Physical
and CTMC models resulting from a long calibration shown alongside LSTM models and a
manually calibrated Cyber-Physical model.

Note that themanually calibratedmodel performs better initially than the other Cyber-Physical
models and the CTMC models. However, its accuracy deteriorates later in the time horizon
for both Aotearoa | New Zealand – see Figure 5.4b – and for the other locations – this can
be observed from the second peak in errors in Figure 5.4a that is not from the Aotearoa |
New Zealand errors (which contributes to the first peak). Zooming in to the beginning of
the modelling time horizon for Aotearoa | New Zealand, both the errors and ranking of the
manually calibrated Cyber-Physical model are very good, but deteriorating quickly, for just
over a week (from April 7-14) until it is no longer the best ranked model. Figure 5.4 shows
the difficulty of calibrating models manually, hence the value of automated calibration. While
the manual calibration by experts is superior for the initial period of modelling (which was
likely their focus), by extending the model errors (and associated ranking) over a longer
time horizon and calibrating the model to reduce those errors, the calibration framework has
produced models are better predictors of disease spread in the long term, (although worse
over the first week of the time horizon). Further manual calibration considering the entire
time horizon may result in a better model, but that is both difficult due the the large number
of input parameters and, hence, time intensive.
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(a) Overall cases ranking – short (b) Overall cases ranking – long

(c) Kenya cases ranking – short (d) Kenya cases ranking – long

(e) Aotearoa | NZ cases ranking – short (f) Aotearoa | NZ cases ranking – long

(g) Sweden cases ranking – short (h) Sweden cases ranking – long

(i) United Kingdom cases ranking – short (j) United Kingdom cases ranking – long

Figure 5.3: Comparing cases ranking metric: short on the left, long on the right – same
definitions as figure 5.1
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(a) Overall new cases – long & manual cali-
bration

(b) Aotearoa | NZ new cases – long & manual
calibration

(c) Aotearoa | NZ new cases, early dates –
long & manual calibration

(d) Aotearoa | NZ cases ranking, early dates
– long & manual calibration

Figure 5.4: Comparing manual calibration of the Cyber-Physical model

5.2 Case study 2: Aotearoa | New Zealand and Sudan

Similar to Case study 1 – see §5.1, figures 5.5 and5.6 compare the new cases metrics for the
(Aotearoa | New Zealand, Sudan) case study between a preliminary, short calibration run (5
individuals, 2 offspring, 3 generations, 10% allowed change from initial values) and a more
thorough, long calibration run (20 individuals, 15 offspring, 500 generations, 50% change
allowed from initial values). Appendix A.2 contains plots of the equivalent metrics for new
deaths in Figures A.3 and A.4. Note that – as in Case Study 1, §5.1 – the Cyber-Physical
and CTMC algorithm labels have a unique code appended that links to the input parameters
being used. Given new calibration runs for this case study, the codes are different from Case
Study 1.

5.2.1 Comparison of case study results

One location, Aotearoa | New Zealand, was common to both case studies although the case
studies had different modelling time horizons. In Figure 5.7 we compare the errors in pre-
dicting case numbers from both case studies and from short and long calibration runs.

In both case studies, despite the difference in time horizon, there are significant errors in case
number prediction at the beginning of the time horizon. This error also drops significantly (by
approximately 66% and 60% respectively) with more calibration time. This indicates that
the errors in the models being calibrated are due to interactions between the models and
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(a) Overall new cases – short (b) Overall new cases – long

(c) Aotearoa | NZ new cases – short (d) Aotearoa | NZ new cases – long

(e) Sudan new cases – short (f) Sudan new cases – long

Figure 5.5: Comparing new cases metric: – same definitions as figure 5.1

the input parameters, e.g., initial numbers of people in each disease state, rather than an
inherent difficulty predicting case numbers at a particular point in time. For example, the
errors in June are very low for case study 1 – see Figures 5.7a and 5.7b – but high for case
study 2 – see Figures 5.7c and 5.7d, due to June being at the beginning of case study 2’s
time horizon. More research, such as refining the models within the calibration framework,
is needed, but the results demonstrate that it is possible to get the models to give good
predictions of case numbers - just not (yet) at the beginning of the time horizon.

5.3 Results from ensemble integration

The ensemble creates an integrated prediction that is informed by each constituent model.
The results indicate that the final prediction benefits from the contribution of each model
while staying robust by ignoring contributions from errant models. The ability to pay attention
to accurate predictions while ignoring systemic errors is a demonstration of the RIO-based
uncertainty estimation introduced in this report. This section covers the capabilities of the
RIO-based ensemble in (1) error correction and (2) uncertainty estimation.
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(a) Overall cases ranking – short (b) Overall cases ranking – long

(c) Aotearoa | NZ cases ranking – short (d) Aotearoa | NZ cases ranking – long

(e) Sudan cases ranking – short (f) Sudan cases ranking – long

Figure 5.6: Comparing cases ranking metric: short on the left, long on the right – same
definitions as figure 5.1

5.3.1 Error correction

The ensemble system benefits from two sources of error correction, illustrated in the second
and third columns, respectively, of Figure 5.8, which illustrates the results of case study 1 for
Aotearoa | NZ:

1. The error correction models, implemented using RIO, provide a source of error cor-
rection based on previously seen training data. These models estimate the level of
uncertainty and provide corrections based on the kinds of errors the model has made
in the past on known data.

2. When the constituent models are integrated into the full ensemble, the biases of each
model cancel out. The averaging out of various biases is the core idea behind ensem-
bling and the reason our approach uses a variety of diverse modeling techniques.
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(a) Case study 1, Aotearoa | NZ new cases –
short

(b) Case study 1, Aotearoa | NZ new cases –
long

(c) Case study 2, Aotearoa | NZ new cases –
short

(d) Case study 2, Aotearoa | NZ new cases –
long

Figure 5.7: Comparing case studies, new cases metric for Aotearoa | New Zealand – same
definitions as figure 5.1

Figure 5.8: (Left Column) The predictions of the v1 LSTM and v2 Conditional LSTM are
shown in blue, alongside the ground truth during this scenario shownwith a black dashed line.
(Middle Column) RIO has been applied to each model, producing a corrective adjustment
along with an estimate of the uncertainty of the model. (Right Column) The two uncertainty
distributions are integrated into a final prediction with uncertainty.

We evaluate the integrated ensemble prediction compared with the individual models alone
(Figure 5.9). To do this, we compare the most likely prediction of the ensemble and computed
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error as the average absolute difference between its prediction and the true number of cases
per one hundred thousand population. The results indicate that the ensemble system is an
improvement in the accuracy of the various inputs while maintaining robustness to member
predictions that had high errors. In some cases, as in Sweden and the United Kingdom, the
ensemble greatly outperforms any constituent model prediction by producing more accurate
predictions.

Figure 5.9: The prediction errors for the ensemble members are shown, along with the pre-
diction error for the integrated full ensemble.

5.3.2 Uncertainty estimation

The ensemble serves to produce a final estimate that incorporates all the member predictions
while being robust to errors. The RIO models capture the characteristic patterns of error of
each model and thus output a high level of estimated uncertainty corresponding to regimes
in which models perform poorly.

We observed that the ensemble system successfully filtered out noisy predictions so that
they did not interfere with the final ensemble (Figure 5.10). The system correctly estimated
a high level of uncertainty in contexts where models were more prone to errors. In the final
results, the models assigned greater uncertainty had less impact on the final forecast.
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Figure 5.10: The results of the RIO-ensemble on Scenario 7 for Sweden demonstrate the
uncertainty estimation capability of the ensemble integration. The first column indicates the
predicted number of cases produced by each constituent model in the ensemble. The sec-
ond column indicates the RIO-adjusted forecasts, where darker colors indicate the likelihood
of the forecast. Note that the CTMC model is assigned a wide window of likelihood, corre-
sponding to a high estimated uncertainty in the predictions. The third column indicates the
integrated ensemble. Accordingly, the contributions from models with high uncertainty do
not significantly impact the results.

6 Conclusion

This report is the second of two progress reports from the GPAI Pandemic Resilience project.
The previous report (GPAI, 2023) presented recommendations on various approaches that
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aligned pandemic modelling with responsible AI. To start the conclusion of this report we
revisit several of those recommendations and discuss how the research described in this
report is aligned with the previous recommendations. We then discuss the limitations of the
research to date and look to the future in terms of how this research could be used and further
research and development possibilities.

6.1 Contributions

This section discusses the contributions from the Pandemic Resilience project’s research
including standardisation, ensemble models and principles of responsible AI.

6.1.1 Standardisation is important

For models to be consistent, shared, compared and/or combined, there needs to be a stan-
dard interface, e.g., an API, for the inputs, data and outputs used by the models. We used the
OxCGRT standard dataset to provide standardised input data as well as standardised data
to compare our model outputs against. We defined standards for both inputs and outputs, as
well as how the inputs are enabled to change during calibration. This standardisation meant
that all 3 of the models considered could be used for any defined problem instance, e.g.,
the two case studies in §5.1 and §5.2 respectively. The models can be calibrated consis-
tently and produce synchronised outputs for evaluation and combined into an ensemble –
as demonstrated via the case studies. Although some assumptions were required to create
the standardised API for the selected models, this standardised approach has meant that
the Cyber-Physical and CTMC models can now be used for locations and time periods be-
yond their initial development. The standards also enable new models to be added to the
calibration framework and ensemble model with relative ease.

6.1.2 Ensemble models provide robustness and perspective

One of the previous report’s recommendations was the use of ensemble modelling due to its
robustness and its ability to incorporate diverse perspectives by bringing models together.
The preliminary research into ensemble models presented by GPAI (2023) has been ex-
tended in this report where a RIO-based ensemble method has been presented in §4. The
RIO-based ensemble model not only combines multiple models when making predictions,
but also adapts how the models are combined. This adaptive approach ensures that as
model performance changes, their influence on the overall ensemble is adjusted to match.

The use of ensemble modelling in this research is key for both building trust in the predictions
from the models as well as embedding diverse perspectives, via different models in the en-
semble. The RIO-based ensemble provides both predictions and estimates of uncertainties
in its predictions, so decision-makers also get a sense of the variability in potential outcomes
and, hence, can include robustness in their planning, i.e., plan for uncertainty.

Pandemic Resilience AI-calibrated ensemble of models 47



6.1.3 Enables informed, data-driven decision making

Policymakers require actionable insights and recommendations that are based on evidence.
Faced with a constantly evolving complex world, models offer a tool to understand, discuss,
participate and eventually find a workable agreement which takes account of all available
information provided by experts and practitioners. The Pandemic Resilience project enables
calibrated models to be easily created across multiple locations and time periods. It also
streamlines the creation of models for new locations, given data for new locations is avail-
able. This means that decision-makers have access to high-quality models for their desired
location and time period, which the assurance that the models are consistent across other
locations and times. Hence, decision-makers use data and models to inform their decision-
making with confidence in the validity of both the data and the models. These models can
also be used to evaluate the effect of decisions in terms of disease spread and mortality and,
in future iterations of this research, the models can also be used to recommend decisions to
achieve specified aims such as, for example, minimising the number of deaths.

Although the models produced by the Pandemic Resilience project can be prescriptive, this
research intends to keep human values at the core of decision-making, but support that
decision-making with sophisticated modelling and comprehensive data. By making both the
modelling and data more accessible, even to those whomay not have the requisite resources
and/or skills to develop them independently, the Pandemic Resilience project aims to em-
power decision-makers to use data-driven approaches to inform their decision-making. In
addition, new data and/or models may be reasonably easily added to the framework, so
diversity of geography and perspective is included in the Pandemic Resilience project.

6.1.4 Preparedness

Over the last two decades, there have been numerous outbreaks of viral infections, includ-
ing Chikungunya, Ebola, Zika, Nipah, H7N9 avian flu, H1N1, SARS, MERS, and COVID-19.
While COVID-19 continues, an exceptional number of monkeypox (a.k.a. mpox) cases have
recently been documented in non-endemic areas. The calibration framework and ensemble
modelling presented in this report have been developed to be part of a pandemic prepared-
ness suite of tools. In addition, the approach taken in the development of the calibration
framework, e.g., standardisation, using an ensemble of models, was deliberately chosen
so the developed tools could be useful for future pandemics. For example, although there
are currently no specific treatments for monkeypox, several antiviral medications developed
to treat smallpox (Tecovirimat, Cidofovir, Brincidofovir, and Vaccinia Immune Globulin In-
travenous – VIGIV) are being used to treat monkeypox disease. Combining approaches,
including AI, for diagnosing, tracking, and monitoring monkeypox infections can produce
high-quality standardised data (cf. OxCGRT) which can then be combined with either more
general ML models (e.g., the LSTM model) or disease-specific parameterised models (e.g.,
the CTMC model) within an ensemble for evaluating monkeypox metrics (e.g., spread, mor-
tality). The ensemble model can then be calibrated using a customisation of the framework
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described in this report to provide accessible, calibrated monkeypox predictions – based on
any NPIs that are being used – for multiple locations.

6.2 Limitations of the calibration framework and en-
semble models

One clear limitation of the research in this report is the efficacy of the pandemic spread
models used within the ensemble. While the LSTM models are generic and can be used
with any pandemic data, they require a reasonable volume of data to achieve good accuracy.
The Cyber-Physical and CTMC models were developed specifically for COVID-19 spread
and also come from the start of the pandemic, so don’t (yet) have reinfection as part of the
models. However, the ability of the calibration model to be quickly customised to new models
and new diseases mitigates the limitations of the underlying models to some extent.

The reliance of both the Cyber-Physical and CTMCmodels on good input parameters is clear
from both the manual calibration results – see §5.1.1 – and the artefact of their low accuracy
at the start of the modelling horizon, regardless of the actual data values at that time – see
§5.2.1. The automated calibration is improving this accuracy, but it is still significant after
a reasonably long calibration. Further research involving longer calibration runs is needed
to observe the trade-off between calibration time and accuracy. In addition, some deeper
analysis of how the performance of the Cyber-Physical and CTMC models is affected by
their input parameters may help provide more accurate estimates.

Similar to the calibration framework, the ensemble model is limited by the performance of
the models that underpin the ensemble. However, the RIO-based approach also adapts
the ensemble so that the best-performing models inform predictions. Hence, shortcomings
of individual model/input configurations can be overcome within the ensemble, as much as
possible within the RIO-based approach.

6.3 Use cases

Given the successful prototyping of the calibration framework and ensemble modelling de-
scribed in this report, we next turn our attention to how these digital tools might be used
in practice by decision-makers. In this section, we summarise three use cases – originally
specified in the previous Pandemic Resilience report (GPAI, 2023) – and describe how the
calibration framework/ensemble model could support those use cases.

6.3.1 Forecasting

Forecasting requires an ability to accurately forecast the future. When managing pandemics
the focus is on short-term to medium-term forecasting given decisions on, e.g., the use of
NPIs. Forecasting with ensemble models enables the robustness of forecasts and the inclu-
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sion of levels of uncertainty to support decision-making. Incorporating a forecasting ensem-
ble model in public health policy assists decision-making processes for resource allocation
and response planning.

The use case demonstrated in the case studies – see §5 – is forecasting. Parameters for the
models, including initial numbers of people in various disease stages, are estimated and the
calibration framework uses all available data to improve the forecasting from the ensemble
model. Automated adjustment of (uncertain) parameter estimates results in an improved
forecasting model for supporting decision-makers.

6.3.2 Scenarios

Longer forecast horizons result in greater uncertainty and larger forecast errors. The use of
scenarios can help to guide a participatory conversation about what is most likely to happen
in the future. Combining scenarios with ensemble modelling can help to manage risk and
avoid disastrous consequences. Mitigating against forecast error within ensemble models
that use scenarios involves incorporating scenario-based analysis, using model averaging or
weighted averaging, applying data assimilation techniques, and employing post-processing
techniques (Kuhl et al., 2007; Cawood and Zyl, 2021; Rayner and Bolhuis, 2020). The use
of a variety of scenarios alongside ensemble modelling when planning, e.g., a pandemic
response, adds robustness to the decision-makers’ plans.

As discussed in §6.3.1, accurate forecasts can be determined using the calibration frame-
work and embedded ensemble model. However, scenarios are also supported as input
parameters – including initial numbers of people in various disease stages and/or the NPI
schedule – can be specified and fixed, i.e., the calibration framework will not automatically ad-
just them. Then, the calibration framework will determine the most accurate ensemble model
given the fixed input parameters, so the effect of fixing particular parameters to specific val-
ues on forecast accuracy can be observed. In addition, calibrated input parameters can be
blended with input parameters for given scenarios so scenario outcomes can be measured
with as little “noise” from uncertain parameters as possible, i.e., the calibration framework
can provide valuable inputs to scenario analysis. Further research and model Development
Operations (DevOps) are required to streamline scenario analysis alongside the calibration
framework presented here.

6.3.3 Policy laboratories

A policy laboratory (a.k.a. policy lab) refers to a space or platform or controlled environment
where interdisciplinary teams, including policymakers, researchers, and stakeholders, come
together to test and evaluate different policy interventions, strategies, and approaches before
large-scale implementation (Lunn and Choisdealbha, 2018). Policy labs are used to iden-
tify risks, vulnerabilities, and unintended consequences, and evaluate the effectiveness and
feasibility of different policy measures(Saam and Kerber, 2008). As an example of the utility
of integrating diverse datasets, Agyapon-Ntra and McSharry (2022) combined OxCGRT with

Pandemic Resilience AI-calibrated ensemble of models 50



Google mobility data to quantify compliance at the country level and evaluate the efficacy of
different policies in reducing cases. The platform offers a means of safely exploring different
policies and better understanding the costs and benefits (economic and health).

The calibration framework is designed for use in a policy laboratory environment. Decision
makers can set up experiments, e.g., locations and time horizons of interest along with esti-
mates of input parameters, and automatically calibrate an ensemble model to get accurate
forecasts of pandemic spread. Future research and model DevOps will enable the result-
ing ensemble model to be available for experimentation in terms of the input parameters,
e.g., estimated numbers of presymptomatic people in the population, the NPIs being used.
Hence, exploration of how pandemic responses relate to a variety of well-calibrated modelled
outcomes is possible.

6.4 Future work

6.4.1 Ensuring robust forecasting via diversity

After the COVID-19 pandemic and the current monkeypox (a.k.a. mpox) epidemic, the world
is becoming more conscious of the need for pandemic preparation. While there was a burst
of modelling activity during the COVID-19 pandemic, there is still a scarcity of modelling envi-
ronments that are suitable for guiding pandemic response. This work developed a research
prototype that uses AI to calibrate and deploy multiple pandemic spread models in an ensem-
ble over numerous geographies. While these models are COVID-specific, the AI calibration
framework is disease-independent, and the ensemble model method allows more models to
be added as needed.

This research started to explore the use of multiple models in an ensemble as well as con-
sistent parameter values across different locations so that the model outcomes are diverse
both in their perspective (i.e., combining different models) and geography (i.e., using data
from different locations). This diversity promotes robustness both in the way the RIO-based
ensemble estimates uncertainty and how the calibration framework ensures good model per-
formance for multiple locations.

The next level of Pandemic Resilience could expand the AI-calibration study prototype to in-
clude Pandemic Preparedness and further models. This can automate the usage of the cali-
bration and models to support decision-making. The next phase of the Pandemic Resilience
project could look to add other models (ensuring diversity of perspective) and/or consider
different ensemble methods (ensuring diverse perspectives are appropriately valued). More
testing of the calibration framework is also needed to make sure models are fit-for-purpose
across multiple locations. Finally, embedding the calibration framework within a pandemic
preparedness approach would ensure robust forecasting informs good decision-making –
see §6.4.4 for more.
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6.4.2 Extension to other diseases

Asmentioned in §6.4.1, the calibration framework was developed using COVID-specific mod-
els, but the calibration framework is model agnostic. Hence, the framework could be used to
support responses to various diseases with similar methods but different data and models.
For example, given available data for influenza, respiratory syncytial virus (RSV), monkeypox
(a.k.a. mpox), and adenovirus, predictive models may be rapidly calibrated across multiple
locations. It is conceivable that the calibration framework could be part of a platform with a
library of disease models and used as part of a comprehensive continuous monitoring and
intervention strategy for public health officials.

6.4.3 Adding economic performance

Decision-making usually involves considering the costs and benefits of different actions. The
pandemic presented policymakers with substantial challenges in that neither the adverse
economic impacts nor the benefits in terms of protecting society were readily available. To
make matters worse, different variants of the virus presented a range of mortality rates and
the efficacy of the available vaccines were not fully understood or quantified initially.

The calibration framework can easily include new models and ensure that their inputs are
consistent with all other models. Hence, an economic model could be added and it would
use the same NPIs as the COVID-19 spread models. After calibration the ensemble model
could then be used to explore how to use NPIs to find the best balance between public health
and economic outcomes.

6.4.4 Policy recommendations

Currently, the calibration framework aims to provide robust forecasting, scenario analysis and
policy lab functionality. However, since NPIs are part of the input parameters, NPI scenarios
can be optimized based on several objectives such as the number of cases and economic
impact. Prescriptive models can then help decision-makers make informed choices by sug-
gesting NPI timelines based on desired tradeoffs between objectives. Decision makers can
also limit the prescriptive model’s search to certain scenarios, such as schools closing for
a maximum of two weeks, “recommendation for full lockdown”, and so on. Additionally,
decision-makers can predict the effectiveness of proposed improvements.

Effective use of the technology presented in this report requires close coordination between
governments, decision-makers, and computational experts. Although the prospect of pre-
scriptive models is appealing, decision-makers must maintain accountability for model-based
decisions. Responsible AI requires integrating ethics, transparency, and responsibility into
decision support systems.

As we’ve seen with the COVID-19 pandemic and climate change, the next global disaster
might be a complex web of interconnected problems. Models will become more important
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in guiding decision-makers through these complex difficulties. Human-centred AI and mod-
elling are essential for responsible and successful decision support systems. The use of
such technology will have impactful implications for understanding and responding to future
pandemics or global emergencies. Governments, with their ability to make consequential
decisions, should look for effective ways to embed this technology within policy recommen-
dations.

6.4.5 Scientific publication

In addition to future work that would enable the calibration framework and ensemble models
to be part of pandemic preparedness initiatives, the next phase of the Pandemic Resilience
project will also involve more comprehensive testing and analysis for publication in academic
journals. The outcomes of the research presented in this report are of interest not only to
public health and government more widely, but for researchers in modelling and AI. Trans-
forming and extending the work in this report and the previous Pandemic resilience report
will provide material for one or more transdisciplinary journal articles on modelling and AI for
pandemic response and/or public health policy.

6.5 Final remarks – Responsible AI

TheResponsible AIWorkingGroup within GPAI describes responsible AI as “human-centred,
fair, equitable, inclusive and respectful of human rights and democracy, and that aims at con-
tributing positively to the public good” (GPAI, 2024). The research in this report was designed
to align with these responsible AI principles. This research ultimately aims to contribute to
the public good by developing a suite of digital tools to enhance pandemic preparedness and
assist decision makers to best utilise NPIs and keep people safe from disease spread.

The ensemble approach is inherently inclusive as different models can be easily added to
the calibration, so multiple perspectives from diverse groups can be considered and these
perspectives can be used to inform decision making and support robustness. Safeguarding
inclusion and accessibility means being mindful of the composition of contributors to the
ensemble model. This approach that incorporates diverse perspectives into modelling is
also a natural way to enhance key characteristics of responsible AI such as interoperability,
explainability and robustness.

The ensemble approach is equitable in that the calibration framework and standardised ap-
proach enable people from any location to rapidly create models that can accurately predict
the effect of NPIs on disease spreading in their location. Moreover, the standardization of the
ensemble modelling approach aims to provide easy access to models and data for those ju-
risdictions that do not currently have the resources to develop such models themselves. This
equity of access aims to provide digital modelling to those who may not otherwise be able to
access it, hence the research in this report aims to, in a small way, enhance the democrati-
sation of digital technology and AI thus reducing the digital divide between developed and
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developing nations.

However, it is crucial to be mindful of the fact that the ensemble model developed is intended
to support a human decision maker, i.e., it evaluates decisions on NPIs and, in future iter-
ations, could suggest NPIs schedules. Thus far, the Pandemic Resilience project outputs
are limited to prediction and so the decision making and hence, accountability should re-
main with the human decision makers using the Pandemic Resilience ensemble model. It is
still essential to provide AI and modeling tools as decision making support rather than direct
decision making systems for maintaining human-centred values in decision making. Such
decision support systems, in the hands of public health communities who understand how
they work and how to use them responsibly, has the potential to significantly enhance their
decision making relative to pandemic preparedness and response.

Keeping the decision makers responsible and accountable for the decisions they take does
not mean that modelers and developers are free from responsibility and accountability. As it is
true for humans, the many existing and potential forms of models and artificial intelligences
are also subject to biases and errors, among other risks. Thus, the project advocates for
transparency and explainability of the models algorithms and the types of data they use so
the public and expert communities can interact and question the decisions and how they are
being made.

Questioning the data used and the way it is being collected, stored and shared is also crucial.
Governments could play a central role in making the required data available for pandemic
modeling, and in ensuring data rights are being protected. While data sanitization and privacy
enhancing technologies are promising avenues to protect the privacy rights of individuals and
communities, thoughtful reflections and actions need to go into ensuring responsible data
governance for such systems.

Some argue that Responsible AI can be understood as a destination, an ideal to keep aim-
ing for. The hard collaborative work done the pandemic Resilience Project demonstrates
sustained honest efforts in that direction.
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Appendices

The appendices contain plots of the new deaths metrics for the two case studies – in §A.1
and §A.2 respectively – and the full example JSON files for input, output and calibration
parameters – in §A.3, §A.4 and §A.5 respectively. Note that these appendices start on the
next page due to the size of the figures.
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A.1 Case study 1: Aotearoa | New Zealand, Kenya,
Sweden and the United Kingdom – New deaths
metrics

(a) Overall new deaths – short (b) Overall new deaths – long

(c) Kenya new deaths – short (d) Kenya new deaths – long

(e) Aotearoa | NZ new deaths – short (f) Aotearoa | NZ new deaths – long

(g) Sweden new deaths – short (h) Sweden new deaths – long

(i) United Kingdom new deaths – short (j) United Kingdom new deaths – long

Figure A.1: Comparing new deaths metric: short on the left, long on the right – same defini-
tions as figure 5.1
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(a) Overall deaths ranking – short (b) Overall deaths ranking – long

(c) Kenya deaths ranking – short (d) Kenya deaths ranking – long

(e) Aotearoa | NZ deaths ranking – short (f) Aotearoa | NZ deaths ranking – long

(g) Sweden deaths ranking – short (h) Sweden deaths ranking – long

(i) United Kingdom deaths ranking – short (j) United Kingdom deaths ranking – long

Figure A.2: Comparing deaths ranking metric: short on the left, long on the right – same
definitions as figure 5.1
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A.2 Case study 2: Aotearoa | New Zealand and Sudan
– New Deaths Metrics

(a) Overall new deaths – short (b) Overall new deaths – long

(c) Aotearoa | NZ new deaths – short (d) Aotearoa | NZ new deaths – long

(e) Sudan new deaths – short (f) Sudan new deaths – long

Figure A.3: Comparing new deaths metric: short on the left, long on the right – same defini-
tions as figure 5.1
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(a) Overall deaths ranking – short (b) Overall deaths ranking – long

(c) Aotearoa | NZ deaths ranking – short (d) Aotearoa | NZ deaths ranking – long

(e) Sudan deaths ranking – short (f) Sudan deaths ranking – long

Figure A.4: Comparing deaths ranking metric: short on the left, long on the right – same
definitions as figure 5.1

A.3 Example input JSON file

The following JSON file is the input JSON file for Case Study 2: Aotearoa | New Zealand
and Sudan – see §5.2.

1 {
2 "global": {
3 "parameters": {
4 "npi_list": {
5 "code": "1.1.1.1",
6 "list": [
7 "C1_School closing",
8 "C2_Workplace closing",
9 "C3_Cancel public events",
10 "C4_Restrictions on gatherings",
11 "C5_Close public transport",
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12 "C6_Stay at home requirements",
13 "C7_Restrictions on internal movement",
14 "C8_International travel controls",
15 "E1_Income support",
16 "E2_Debt/contract relief",
17 "E3_Fiscal measures",
18 "E4_International support",
19 "H1_Public information campaigns",
20 "H2_Testing policy",
21 "H3_Contact tracing",
22 "H4_Emergency investment in healthcare",
23 "H5_Investment in vaccines",
24 "H6_Facial Coverings",
25 "H7_Vaccination policy",
26 "H8_Protection of elderly people",
27 "M1_Wildcard",
28 "V1_Vaccine Prioritisation (summary)",
29 "V2A_Vaccine Availability (summary)",
30 "V2B_Vaccine age eligibility/availability age floor (

general population summary)",
31 "V2C_Vaccine age eligibility/availability age floor (at

risk summary)",
32 "V2D_Medically/ clinically vulnerable (Non-elderly)",
33 "V2E_Education",
34 "V2F_Frontline workers (non healthcare)",
35 "V2G_Frontline workers (healthcare)",
36 "V3_Vaccine Financial Support (summary)",
37 "V4_Mandatory Vaccination (summary)"
38 ],
39 "max_npi_level": {
40 "code": "1.1.1.1.2",
41 "value": 4
42 }
43 },
44 "variant_list": {
45 "code": "1.1.1.2",
46 "list": [
47 "alpha",
48 "delta",
49 "omicron"
50 ]
51 },
52 "reproductive_numbers": {
53 "code": "1.1.1.2.1",
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54 "rates": [{
55 "variant": "alpha",
56 "R0": 2.79,
57 "comment": "Estimation of basic reproductive number aka

R0 of the Alpha variant of SARS-CoV-2 was sourced
from Farmaz, S., Yousefian, N., Tehranipoor, P. &
Kowsari, Z. (2022) URL: https://journals.plos.org/
plosone/article?id=10.1371/journal.pone.0265489.
These can be adjusted to suit different scenarios. "

58 },
59 {
60 "variant": "delta",
61 "R0": 5.08,
62 "comment": "Estimation of basic reproductive number aka

R0 of the Delta variant of SARS-CoV-2 was sourced
from Liu, Y.& Roclov, J. (2022) URL: https://www.
southernhealth.nz/sites/default/files/2021-10/The%20
reproductive%20number%20of%20the%20Delta%20variant%2
0of%20SARS-CoV-2%20is%20far%20higher%20compared%20to
%20the%20ancestral%20SARS-CoV-2%20virus.pdf.These
can be adjusted to suit different scenarios."

63 },
64 {
65 "variant": "omicron",
66 "R0": 9.5,
67 "comment": "Estimation of basic reproductive number aka

R0 of the Omicron variant of SARS-CoV-2 was sourced
from Lui, Y. & Rocklove, J. (2022) URL: https://www
.ncbi.nlm.nih.gov/pmc/articles/PMC8992231/ . These
can be adjusted to suit different scenarios. "

68 }
69 ],
70 "comment": "Transmission rates, sources provided"
71 },
72 "stages": {
73 "code": "1.1.1.3",
74 "list": ["S", "E", "P", "I1", "I2", "R", "D"],
75 "list_alt": ["Sus", "Exp", "Pre", "I1", "I2", "Rec", "Dec"]
76 },
77 "transition_rates": {
78 "code": "1.1.1.3.2",
79 "file": "transition_rates.csv",
80 "comment": "CSV file with transition rate matrix, in same

directory as this JSON. Columns are Variant, CountryName
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, CountryCode, RegionName, RegionCode, Jurisdiction,
StageFrom, StageTo, Rate. The formula used to derive
rates can be found in formula_extra_transition_rates.csv
. Note that S (Sus) to E (Exp) is not needed as it will
be calculated from the effective reproductive number.
The source of the data is the Covid modelling by Mike O'
Sullivan, Cameron Walker and Ilze Ziedins - see Overleaf
report and covid-19-parameters_current.xlsx"

81 },
82 "relative_infectiousness_presymptomatic": {
83 "code": "1.1.1.3.3",
84 "value": 0.5,
85 "comment": "The source of the value is the Covid modelling

by Mike O'Sullivan, Cameron Walker and Ilze Ziedins -
see covid-19-parameters_current.xlsx"

86 },
87 "countries_modelled": {
88 "code": "1.1.1.4",
89 "list": [
90 "New Zealand",
91 "Sudan"
92 ]
93 },
94 "IFR": {
95 "code": "1.1.1.5",
96 "list": [
97 "IFR0", "IFR1"
98 ],
99 "comment": "IFR0 is IFR when ICU is under capacity and IFR1

is IFR when ICU is over capacity"
100 }
101 }
102 },
103 "location": {
104 "parameters": {
105 "variant_proportions": {
106 "code": "1.2.1.1",
107 "list" : [
108 {
109 "country": "New Zealand",
110 "list": [
111 {
112 "variant": "alpha",
113 "proportion": 1.0,
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114 "comment": "Where did this estimate come from"
115 },
116 {
117 "variant": "delta",
118 "proportion": 0.0,
119 "comment": "Where did this estimate come from"
120 },
121 {
122 "variant": "omicron",
123 "proportion": 0.0,
124 "comment": "Where did this estimate come from"
125 }
126 ]
127 },
128 {
129 "country": "Sudan",
130 "list": [
131 {
132 "variant": "alpha",
133 "proportion": 1.0,
134 "comment": "Where did this estimate come from"
135 },
136 {
137 "variant": "delta",
138 "proportion": 0.0,
139 "comment": "Where did this estimate come from"
140 },
141 {
142 "variant": "omicron",
143 "proportion": 0.0,
144 "comment": "Where did this estimate come from"
145 }
146 ]
147 }
148 ]
149 },
150 "effective_transmission_rates": {
151 "code": "1.2.1.2",
152 "function": "basicTransmission"
153 },
154 "extra_stages": {
155 "code": "1.2.1.3",
156 "list": ["W1", "ICU"]
157 },
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158 "extra_transition_rates": {
159 "code": "1.2.1.3.2",
160 "file": "extra_transition_rates.csv",
161 "comment": "CSV file with transition rate matrix including

extra stages, in same directory as this JSON. Columns
are Variant, IFR4ICUCapacity, CountryName, CountryCode,
RegionName, RegionCode, Jurisdiction, StageFrom, StageTo
, Rate. The formula used to derive rates can be found in
formula_extra_transition_rates.csv. The source of the
data is the Covid modelling by Mike O'Sullivan, Cameron
Walker and Ilze Ziedins - see Overleaf report and covid-
19-parameters_current.xlsx"

162 },
163 "initial_numbers": {
164 "code": "1.2.1.4",
165 "file": "initial_numbers.csv",
166 "comment": "CSV file with initial numbers, in same

directory as this JSON"
167 },
168 "model_horizon": {
169 "code": "1.2.1.5",
170 "start": "1-06-2020",
171 "finish": "1-09-2020",
172 "interval_in_days": 1
173 },
174 "npi_schedule": {
175 "code": "1.2.1.6",
176 "file": "npi_schedule.csv",
177 "comment": "CSV file with the planned schedule for NPIs in

the given location"
178 },
179 "health_system_parameters": {
180 "code": "1.2.1.7",
181 "list": [
182 {
183 "country": "Sudan",
184 "list": [
185 {
186 "parameter": "number_icu_beds",
187 "code": "1.2.1.7.1",
188 "value": 184,
189 "comment": "Estimate from National Library for

Ministries Healthcare Africa"
190 },
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191 {
192 "parameter": "prop_to_icu",
193 "code": "1.2.1.7.2",
194 "value": 0.11,
195 "comment": "The source of the value is the Covid

modelling by Mike O'Sullivan, Cameron Walker and
Ilze Ziedins - see covid-19-parameters_current.
xlsx"

196 },
197 {
198 "parameter": "relative_infectiousness_ward",
199 "code": "1.2.1.7.3",
200 "value": 0.05,
201 "comment": "The source of the value is the Covid

modelling by Mike O'Sullivan, Cameron Walker and
Ilze Ziedins - see covid-19-parameters_current.
xlsx"

202 },
203 {
204 "parameter": "relative_infectiousness_icu",
205 "code": "1.2.1.7.4",
206 "value": 0.01,
207 "comment": "The source of the value is the Covid

modelling by Mike O'Sullivan, Cameron Walker and
Ilze Ziedins - see covid-19-parameters_current.
xlsx"

208 }
209 ]
210 },
211 {
212 "country": "New Zealand",
213 "list": [
214 {
215 "parameter": "number_icu_beds",
216 "code": "1.2.1.7.1",
217 "value": 233,
218 "comment": "The source of the value is the Covid

modelling by Mike O'Sullivan, Cameron Walker and
Ilze Ziedins - see covid-19-parameters_current.
xlsx"

219 },
220 {
221 "parameter": "prop_to_icu",
222 "code": "1.2.1.7.2",
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223 "value": 0.14,
224 "comment": "The source of the value is the Covid

modelling by Mike O'Sullivan, Cameron Walker and
Ilze Ziedins - see covid-19-parameters_current.
xlsx"

225 },
226 {
227 "parameter": "relative_infectiousness_ward",
228 "code": "1.2.1.7.3",
229 "value": 0.05,
230 "comment": "The source of the value is the Covid

modelling by Mike O'Sullivan, Cameron Walker and
Ilze Ziedins - see covid-19-parameters_current.
xlsx"

231 },
232 {
233 "parameter": "relative_infectiousness_icu",
234 "code": "1.2.1.7.4",
235 "value": 0.01,
236 "comment": "The source of the value is the Covid

modelling by Mike O'Sullivan, Cameron Walker and
Ilze Ziedins - see covid-19-parameters_current.
xlsx"

237 }
238 ]
239 }
240 ]
241 }
242 },
243 "data": {
244 "code": "1.2.2",
245 "file": "../OxCGRT_latest.csv",
246 "format": " CountryName,CountryCode,RegionName,RegionCode,

Jurisdiction,Date,C1_School closing,C1_Flag,C2_Workplace
closing,C2_Flag,C3_Cancel public events,C3_Flag,C4
_Restrictions on gatherings,C4_Flag,C5_Close public
transport,C5_Flag,C6_Stay at home requirements,C6_Flag,C7
_Restrictions on internal movement,C7_Flag,C8
_International travel controls,E1_Income support,E1_Flag,E
2_Debt/contract relief,E3_Fiscal measures,E4_International
support,H1_Public information campaigns,H1_Flag,H2
_Testing policy,H3_Contact tracing,H4_Emergency investment
in healthcare,H5_Investment in vaccines,H6_Facial
Coverings,H6_Flag,H7_Vaccination policy,H7_Flag,H8
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_Protection of elderly people,H8_Flag,M1_Wildcard,V1
_Vaccine Prioritisation (summary),V2A_Vaccine Availability
(summary),V2B_Vaccine age eligibility/availability age
floor (general population summary),V2C_Vaccine age
eligibility/availability age floor (at risk summary),V2
D_Medically/ clinically vulnerable (Non-elderly),V2
E_Education,V2F_Frontline workers (non healthcare),V2
G_Frontline workers (healthcare),V3_Vaccine Financial
Support (summary),V4_Mandatory Vaccination (summary),
ConfirmedCases,ConfirmedDeaths,StringencyIndex,
StringencyIndexForDisplay,StringencyLegacyIndex,
StringencyLegacyIndexForDisplay,GovernmentResponseIndex,
GovernmentResponseIndexForDisplay,ContainmentHealthIndex,
ContainmentHealthIndexForDisplay,EconomicSupportIndex,
EconomicSupportIndexForDisplay",

247 "comment": "CSV file with specified format, from https://
github.com/OxCGRT/covid-policy-tracker-legacy/blob/main/
legacy_data_202207/OxCGRT_latest.csv. Each row contains
data as described in the format field and definitions of
the NPI codes are given in the codebook documentation
https://github.com/OxCGRT/covid-policy-tracker/blob/master
/documentation/codebook.md"

248 },
249 "extra_data": {
250 "code": "1.2.3",
251 "file": "extra8.csv",
252 "format": " CountryName,CountryCode,RegionName,RegionCode,

Jurisdiction,Date,ExternalInfectedArrivals,
ConfirmedHospitalised,ConfirmedICU",

253 "comment": "CSV file with extra (optional) with extra data"
254 }
255 },
256 "model": {
257 "effective_transmission_coeffs": {
258 "code": "1.3.1.1",
259 "file": "transmission_coeffs.csv",
260 "comment": "CSV file with table, rows = NPIs, columns =

level of NPI, variant, entries = coeff used in effective
transmission function, i.e., 1.2.1.1. Initial
assumption is that these are the same across alpha,
delta and omicron, but these will be adjusted during
calibration. The initial assumption is that these are
the same across countries, but these will be adjusted
during calibration"
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261 },
262 "models_used": {
263 "list": [
264 "Cognizant",
265 "CyberPhysical",
266 "CTMC"
267 ]
268 },
269 "output_location" : {
270 "code": "1.3.1.2",
271 "location" : {
272 "CTMC": "CTMC_outputs",
273 "CyberPhysical": "CyberPhysical_outputs",
274 "Cognizant": "Cognizant_outputs"
275 }
276 }
277 }
278 }

A.4 Example output JSON file

The following JSON file is the output JSON file for Case Study 2: Aotearoa | New Zealand
and Sudan – see §5.2.

1 {
2 "estimates": {
3 "code": "2.1.1",
4 "file": "model_outputs.csv",
5 "format": " CountryName,CountryCode,RegionName,RegionCode,

Jurisdiction,Date,ConfirmedCases,ConfirmedDeaths",
6 "comment": "CSV file with specified format, adapted from from

https://github.com/OxCGRT/covid-policy-tracker-legacy/blob/
main/legacy_data_202207/OxCGRT_latest.csv. Each row contains
data as described in the format field. From this file we
can get 2.1.1.1 Location information, 2.1.1.2 Time periods
for model horizon, 2.1.1.3 Case number estimates, 2.1.1.4
Recovered number estimates, and 2.1.1.5 Death estimates"

7 },
8 "data": {
9 "code": "2.1.2",
10 "file": "OxCGRT_latest.csv",
11 "format": " CountryName,CountryCode,RegionName,RegionCode,

Jurisdiction,Date,C1_School closing,C1_Flag,C2_Workplace
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closing,C2_Flag,C3_Cancel public events,C3_Flag,C4
_Restrictions on gatherings,C4_Flag,C5_Close public
transport,C5_Flag,C6_Stay at home requirements,C6_Flag,C7
_Restrictions on internal movement,C7_Flag,C8_International
travel controls,E1_Income support,E1_Flag,E2_Debt/contract
relief,E3_Fiscal measures,E4_International support,H1_Public
information campaigns,H1_Flag,H2_Testing policy,H3_Contact
tracing,H4_Emergency investment in healthcare,H5_Investment
in vaccines,H6_Facial Coverings,H6_Flag,H7_Vaccination
policy,H7_Flag,H8_Protection of elderly people,H8_Flag,M1
_Wildcard,V1_Vaccine Prioritisation (summary),V2A_Vaccine
Availability (summary),V2B_Vaccine age eligibility/
availability age floor (general population summary),V2
C_Vaccine age eligibility/availability age floor (at risk
summary),V2D_Medically/ clinically vulnerable (Non-elderly),
V2E_Education,V2F_Frontline workers (non healthcare),V2
G_Frontline workers (healthcare),V3_Vaccine Financial
Support (summary),V4_Mandatory Vaccination (summary),
ConfirmedCases,ConfirmedDeaths,StringencyIndex,
StringencyIndexForDisplay,StringencyLegacyIndex,
StringencyLegacyIndexForDisplay,GovernmentResponseIndex,
GovernmentResponseIndexForDisplay,ContainmentHealthIndex,
ContainmentHealthIndexForDisplay,EconomicSupportIndex,
EconomicSupportIndexForDisplay",

12 "comment": "CSV file with specified format, from https://github
.com/OxCGRT/covid-policy-tracker-legacy/blob/main/
legacy_data_202207/OxCGRT_latest.csv. Each row contains data
as described in the format field and definitions of the NPI
codes are given in the codebook documentation https://
github.com/OxCGRT/covid-policy-tracker/blob/master/
documentation/codebook.md"

13 }
14 }

A.5 Example calibration JSON file

The following JSON file is the calibration JSON file for Case Study 2: Aotearoa | New Zealand
and Sudan – see §5.2.

1 {
2 "global": {
3 "parameters": {
4 "reproductive_numbers": {
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5 "code": "1.1.1.2.1",
6 "rates": [
7 {
8 "variant": "alpha",
9 "R0": { "type": "bounds", "lb" : 2.29, "ub": 3.29 }
10 },
11 {
12 "variant": "delta",
13 "R0": { "type": "bounds", "lb" : 4.58, "ub": 5.58 }
14 },
15 {
16 "variant": "omicron",
17 "R0": { "type": "bounds", "lb": 9, "ub": 10 }
18 }
19 ]
20 },
21 "relative_infectiousness_presymptomatic": {
22 "code": "1.1.1.3.3",
23 "value": { "type": "bounds", "lb": 0, "ub": 1}
24 }
25 }
26 },
27 "location": {
28 "parameters": {
29 "variant_proportions": {
30 "code": "1.2.1.1",
31 "list" : [
32 {
33 "country": "New Zealand",
34 "list": [
35 {
36 "variant": "alpha",
37 "proportion": { "type": "bounds", "lb": 0, "ub": 1}

,
38 "comment": "Where did this estimate come from"
39 },
40 {
41 "variant": "delta",
42 "proportion": { "type": "bounds", "lb": 0, "ub": 1}

,
43 "comment": "Where did this estimate come from"
44 },
45 {
46 "variant": "omicron",
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47 "proportion": { "type": "bounds", "lb": 0, "ub": 1}
,

48 "comment": "Where did this estimate come from"
49 }
50 ]
51 },
52 {
53 "country": "Sudan",
54 "list": [
55 {
56 "variant": "alpha",
57 "proportion": { "type": "bounds", "lb": 0, "ub": 1}

,
58 "comment": "Where did this estimate come from"
59 },
60 {
61 "variant": "delta",
62 "proportion": { "type": "bounds", "lb": 0, "ub": 1}

,
63 "comment": "Where did this estimate come from"
64 },
65 {
66 "variant": "omicron",
67 "proportion": { "type": "bounds", "lb": 0, "ub": 1}

,
68 "comment": "Where did this estimate come from"
69 }
70 ]
71 }
72 ]
73 },
74 "initial_numbers": {
75 "code": "1.2.1.3",
76 "file": { "type": "custom" },
77 "comment": "CSV file with initial numbers, in same

directory as this JSON"
78 },
79 "npi_schedule": {
80 "code": "1.2.1.5",
81 "file": { "type": "custom" },
82 "comment": "CSV file with the planned schedule for NPIs in

the given location"
83 },
84 "health_system_parameters": {
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85 "code": "1.2.1.7",
86 "list": [
87 {
88 "country": "Sudan",
89 "list": [
90 {
91 "parameter": "number_icu_beds",
92 "code": "1.2.1.7.1",
93 "value": { "type": "integer", "lb" : 150, "ub": 200

},
94 "comment": "The source of the value is the Covid

modelling by Mike O'Sullivan, Cameron Walker and
Ilze Ziedins - see covid-19-parameters_current.
xlsx"

95 },
96 {
97 "parameter": "prop_to_icu",
98 "code": "1.2.1.7.2",
99 "value": { "type": "bounds", "lb" : 0.5, "ub": 0.8

},
100 "comment": "The source of the value is the Covid

modelling by Mike O'Sullivan, Cameron Walker and
Ilze Ziedins - see covid-19-parameters_current.
xlsx"

101 },
102 {
103 "parameter": "relative_infectiousness_ward",
104 "code": "1.2.1.7.3",
105 "value": { "type": "bounds", "lb" : 0.03, "ub": 0.0

7 },
106 "comment": "The source of the value is the Covid

modelling by Mike O'Sullivan, Cameron Walker and
Ilze Ziedins - see covid-19-parameters_current.
xlsx"

107 },
108 {
109 "parameter": "relative_infectiousness_icu",
110 "code": "1.2.1.7.4",
111 "value": { "type": "bounds", "lb" : 0.0005, "ub": 0

.0015 },
112 "comment": "The source of the value is the Covid

modelling by Mike O'Sullivan, Cameron Walker and
Ilze Ziedins - see covid-19-parameters_current.
xlsx"
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113 },
114 {
115 "parameter": "prop_to_hospital",
116 "code": "1.2.1.7.5",
117 "value": { "type": "bounds", "lb" : 0.01, "ub": 0.0

5 },
118 "comment": "The source of the value is the Covid

modelling by Mike O'Sullivan, Cameron Walker and
Ilze Ziedins - see covid-19-parameters_current.
xlsx"

119 },
120 {
121 "parameter": "hospLoS",
122 "code": "1.2.1.7.6",
123 "value": { "type": "bounds", "lb" : 18, "ub": 25 },
124 "comment": "The source of the value is the Covid

modelling by Mike O'Sullivan, Cameron Walker and
Ilze Ziedins - see covid-19-parameters_current.
xlsx"

125 },
126 {
127 "parameter": "ICULoS",
128 "code": "1.2.1.7.7",
129 "value": { "type": "bounds", "lb" : 15, "ub": 21 },
130 "comment": "The source of the value is the Covid

modelling by Mike O'Sullivan, Cameron Walker and
Ilze Ziedins - see covid-19-parameters_current.
xlsx"

131 }
132 ]
133 },
134 {
135 "country": "New Zealand",
136 "list": [
137 {
138 "parameter": "number_icu_beds",
139 "code": "1.2.1.7.1",
140 "value": { "type": "integer", "lb" : 200, "ub": 250

},
141 "comment": "The source of the value is the Covid

modelling by Mike O'Sullivan, Cameron Walker and
Ilze Ziedins - see covid-19-parameters_current.
xlsx"

142 },
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143 {
144 "parameter": "prop_to_icu",
145 "code": "1.2.1.7.2",
146 "value": { "type": "bounds", "lb" : 0.5, "ub": 0.8

},
147 "comment": "The source of the value is the Covid

modelling by Mike O'Sullivan, Cameron Walker and
Ilze Ziedins - see covid-19-parameters_current.
xlsx"

148 },
149 {
150 "parameter": "relative_infectiousness_ward",
151 "code": "1.2.1.7.3",
152 "value": { "type": "bounds", "lb" : 0.03, "ub": 0.0

7 },
153 "comment": "The source of the value is the Covid

modelling by Mike O'Sullivan, Cameron Walker and
Ilze Ziedins - see covid-19-parameters_current.
xlsx"

154 },
155 {
156 "parameter": "relative_infectiousness_icu",
157 "code": "1.2.1.7.4",
158 "value": { "type": "bounds", "lb" : 0.0005, "ub": 0

.0015 },
159 "comment": "The source of the value is the Covid

modelling by Mike O'Sullivan, Cameron Walker and
Ilze Ziedins - see covid-19-parameters_current.
xlsx"

160 },
161 {
162 "parameter": "prop_to_hospital",
163 "code": "1.2.1.7.5",
164 "value": { "type": "bounds", "lb" : 0.01, "ub": 0.0

5 },
165 "comment": "The source of the value is the Covid

modelling by Mike O'Sullivan, Cameron Walker and
Ilze Ziedins - see covid-19-parameters_current.
xlsx"

166 },
167 {
168 "parameter": "hospLoS",
169 "code": "1.2.1.7.6",
170 "value": { "type": "bounds", "lb" : 18, "ub": 25 },
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171 "comment": "The source of the value is the Covid
modelling by Mike O'Sullivan, Cameron Walker and
Ilze Ziedins - see covid-19-parameters_current.
xlsx"

172 },
173 {
174 "parameter": "ICULoS",
175 "code": "1.2.1.7.7",
176 "value": { "type": "bounds", "lb" : 15, "ub": 21 },
177 "comment": "The source of the value is the Covid

modelling by Mike O'Sullivan, Cameron Walker and
Ilze Ziedins - see covid-19-parameters_current.
xlsx"

178 }
179 ]
180 }
181 ]
182 }
183 }
184 },
185 "model": {
186 "effective_transmission_coeffs": {
187 "code": "1.3.1.2",
188 "file": { "type": "custom", "pm": 0.1 },
189 "comment": "CSV file with table, rows = NPIs, columns =

level of NPI, variant, entries = coeff used in effective
transmission function, i.e., 1.2.1.2. Initial
assumption is that these are the same across alpha,
delta and omicron, but these will be adjusted during
calibration. The initial assumption is that these are
the same across countries, but these will be adjusted
during calibration"

190 }
191 }
192 }
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