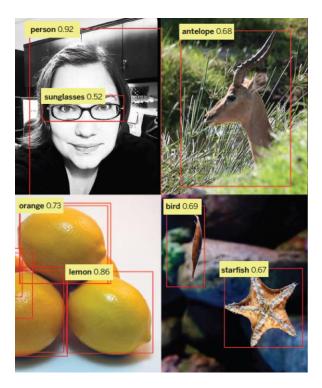
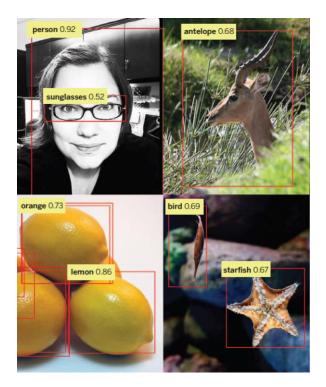

The AI Awakening: What Does It Mean for the Economy?

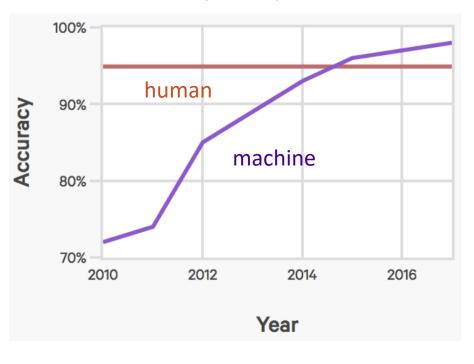
ERIK BRYNJOLFSSON

OECD International Conference on Artificial Intelligence in Work, Innovation, Productivity and Skills


2021.02.01

© 2021 ERIK BRYNJOLFSSON

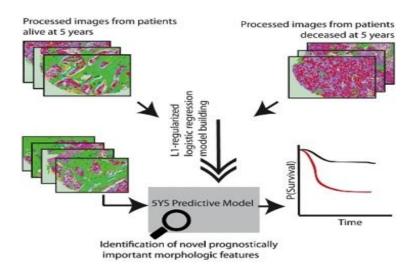

We've crossed a key threshold


ImageNet Visual Recognition Challenge

© 2021 ERIK BRYNJOLFSSON

We've crossed a key threshold

Accuracy of ML system



ImageNet Visual Recognition Challenge

source: The Al Index

Problem solving

Most of the recent progress in machine learning involves mapping from a set of inputs to a set of outputs

INPUT X	Ουτρυτ γ	APPLICATION		
Voice recording	Transcript	Speech recognition		
Historical market data	Future market data	Trading bots		
Photograph	Caption	Image tagging		
Drug chemical properties	Treatment efficacy	Pharma R&D		
Store transaction details	Is the transaction fraudulent?	Fraud detection		
Recipe ingredients	Customer reviews	Food recommendations		
Purchase histories	Future purchase behavior	Customer retention		
Car locations and speed	Traffic flow	Traffic lights		
Faces	Names	Face recognition		

Source: Brynjolfsson, Erik, and Andrew McAfee. "The Business of Artificial Intelligence." Harvard Business Review (2017).

+ Policy challenges

Policy challenges

Understanding the modern productivity paradox

2 The transformation of work

(Consing (Consunication (Asttery (Nevigation (Microriess (Ecology

Where's the AI productivity boom?

The disappointing recent reality

Productivity growth has slowed everywhere

• We are more than one decade into a slowdown in the U.S. and OECD countries

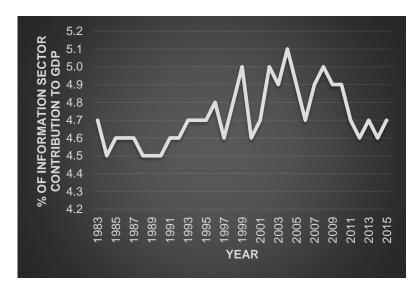
United States:

- 1995-2004: 2.8% per year
- 2005-2019: 1.3% per year

OECD: 29 of 30 countries saw similar-sized slowdowns after 2004

Alternative explanations for the paradox

1


Mismeasurement

Reality better than measured

Free goods: Many digital goods and services

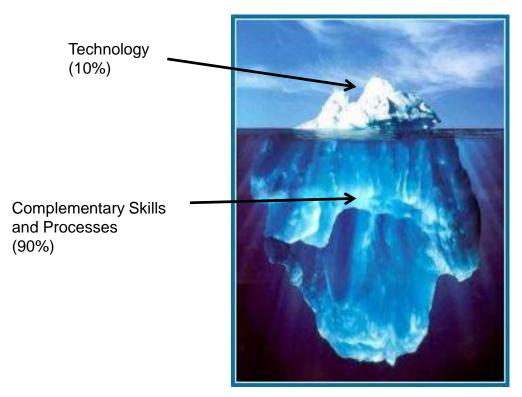
Information goods as a share of GDP

GDP-B: A new measure of the economy

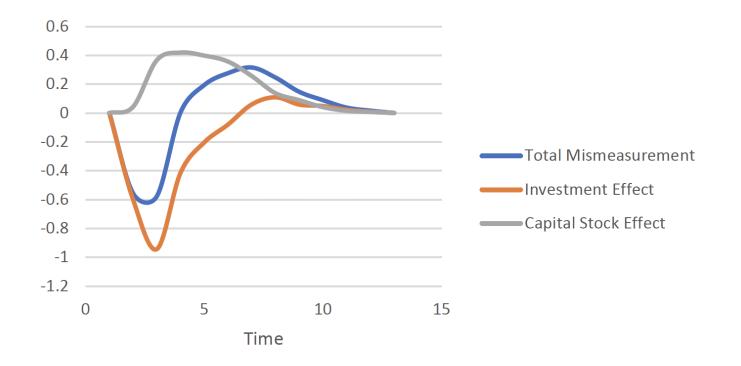
Brynjolfsson, Collis & Eggers (*PNAS* 2019) propose an approach to directly estimate consumer welfare by running massive online choice experiments.

- 1. We run incentive compatible discrete choice experiments
 - "Incentive compatible" => participants risk losing access to the good
 - Recruit a representative sample of the US internet population via online survey panel
 - Use data to estimate the consumer valuation of Facebook
- 2. Quantify the adjustment term to real GDP growth (GDP-B) for the contribution of Facebook
- 3. Run additional incentive compatible discrete choice experiments to estimate the consumer valuation of several popular digital goods
 - Instagram, Snapchat, Skype, WhatsApp, digital Maps, Linkedin, Twitter, and Facebook
 - Conducted in a lab in the Netherlands
- 4. Explore the welfare gains from new goods: case study of smartphone cameras

Alternative explanations for the paradox



Mismeasurement Reality better than measured


Implementation and restructuring lags Technology requires complementary innovation

Computerization > Computers

Source: Brynjolfsson and Hitt, Beyond Computation, J. Econ. Perspectives, 2001.

The Productivity J-Curve

Source: Brynjolfsson, Rock and Syverson, "The Productivity J-Cuve" American Economic Journal: Macroeconomics, January 2021

Growth Accounting

• With unmeasured intangible capital, growth accounting equation becomes:

$$g_{Y} = \left(\frac{pF_{K}K}{Y}\right) \left(\frac{\dot{K}}{K}\right) + \left(\frac{pF_{N}N}{Y}\right) \left(\frac{\dot{N}}{N}\right) + \left(1 - \frac{\lambda}{z}\right) \left(\frac{zI}{Y}\right) \left(\frac{\dot{I}}{I}\right) + \left(\frac{F_{t}}{F}\right)$$

- Key component is the ratio of the shadow price of investment to the purchase price of capital (details in appendix)
- Physical / marketed component may be small relative to the required investments in org change, training, etc.

Policy challenges

Understanding the modern productivity paradox

2 The transformation of work

Machine learning, workforce, and wages

How does technology affect wages?

1. Substitution

Machine learning, workforce, and wages

How does technology affect wages?

- 1. Substitution
- 2. Complementarities
- 3. Demand elasticity
- 4. Income elasticity
- 5. Supply elasticity
- 6. New tasks via invention and transformation

Which tasks will be done by machine learning?

ML is far from AGI

We create a "Suitability for Machine Learning" (SML) rubric to assess tasks

- We apply it to 2,059 Detailed Work Activities in O*NET, 18,112 occupation-specific tasks, and 950 occupations (weighted by task importance)
- Questions are rated on five-point scale from "strongly disagree" to "strongly agree"
- Each DWA is scored by 10 different people

Science

TECHNOLOGY AND THE ECONOMY

What can machine learning do? Workforce implications

Profound change is coming, but roles for humans remain

By Erik Brynjolfsson^{1,2} and Tom Mitchell⁸

Brynjolfsson, Mitchell and Rock, "What Can Machines Learn and What Does It Means for Occupations and the Economy, *AEA P&P*, 2018.

O*Net: Tasks Done by Radiologists (27 tasks)

Sample Tasks (out of 27 tasks):

- 1. Provide advice on types or quantities of radiology equipment needed to maintain facilities.
- 2. Perform interventional procedures such as image-guided biopsy, percutaneous transluminal angioplasty, transhepatic biliary drainage, or nephrostomy catheter placement.
- 3. Administer or maintain conscious sedation during and after procedures.
- 4. Interpret images using computer-aided detection or diagnosis systems.
- 5. Develop treatment plans for radiology patients.
- 6. Treat malignant internal or external growths by exposure to radiation from radiographs (x-rays), high energy sources, or natural or synthetic radioisotopes.
- 7. Conduct physical examinations to inform decisions about appropriate procedures.

O*Net: Tasks Done by Radiologists (27 tasks)

Sample Tasks (out of 27 tasks):

- 1. Provide advice on types or quantities of radiology equipment needed to maintain facilities.
- 2. Perform interventional procedures such as image-guided biopsy, percutaneous transluminal angioplasty, transhepatic biliary drainage, or nephrostomy catheter placement.
- 3. Administer or maintain conscious sedation during and after procedures.
- 4. Interpret images using computer-aided detection or diagnosis systems.
- 5. Develop treatment plans for radiology patients.
- 6. Treat malignant internal or external growths by exposure to radiation from radiographs (x-rays), high energy sources, or natural or synthetic radioisotopes.
- 7. Conduct physical examinations to inform decisions about appropriate procedures.

O*Net: Tasks Done by Radiologists (27 tasks)

Sample Tasks (out of 27 tasks):

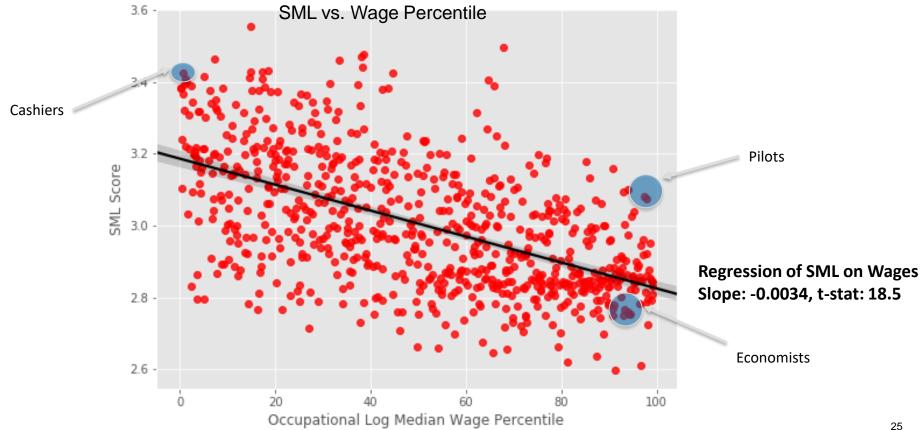
- 1. Provide advice on types or quantities of radiology equipment needed to maintain facilities.
- 2. Perform interventional procedures such as image-guided biopsy, percutaneous transluminal angioplasty, transhepatic biliary drainage, or nephrostomy catheter placement.
- 3. Administer or maintain conscious sedation during and after procedures.
- 4. Interpret images using computer-aided detection or diagnosis systems.
- 5. Develop treatment plans for radiology patients.
- 6. Treat malignant internal or external growths by exposure to radiation from radiographs (x-rays), high energy sources, or natural or synthetic radioisotopes.
- 7. Conduct physical examinations to inform decisions about appropriate procedures.

Total wage value of high SML, high measurability <u>activities</u> is \$713 Billion in the United States

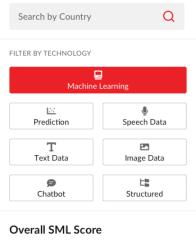
Method: Take the task weights supplied by O*NET and multiply them by the occupational *wage*.

- This is the wage attributable to the task
- Calculate the average wage attributable to the task over occupations
- Sum the wage bill attributable to the task over all occupations
 - This is the total wage bill in a given task (or activity)

Also calculate the high SML wage value, job-specific wage value


- High SML, High Measurability wage value: wage attributable to SML Tasks that are >90th Percentile and >4 Measurability
 - This total is \$713 billion
- Job-specific low SML wage proportion: (Value of low SML Activity in Job / Value of those Activities in overall economy)

Good News, but Also Challenges


Digital progress makes the economic pie bigger. But there is no economic law that everyone, or even most people, will benefit.

ML will affect all groups, but especially lower wage workers

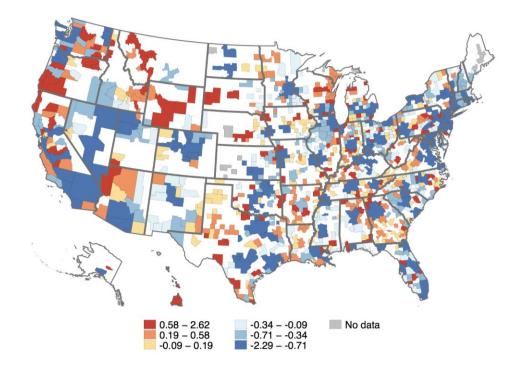
_ _ _ _

Map View Chart View

ТОР	5 COUNTRIES	SML SCORE
:•:	South Korea	3.089
-	Paraguay	3.080
•	Brazil	3.077
_	Colombia	3.077
\succ	South Africa	3.065
BOTTOM 5 COUNTRIES		SML SCORE
•	Burkina Faso	2.828
	Ireland	2.937
	Netherlands	2.943
6	Spain	2.968

		All Ann
S 🗸 🥗 🖓		
Jobs impacted by Machine Learning	SML 3.040	
TOP 5 Switchboard operators	SML SCORE 3.553	
		A REAL
Postal service mail carriers	3.496	
₩ Meter readers, utilities	3.477	
Word processors and typists	3.469	
 Telemarketers 	3.462	
BOTTOM 5	SML SCORE	
Psychologists	2.597	
Lawyers	2.609	
Clinical, counseling, and school psyc	hologists 2.620	5
Industrial-organizational psychologis	sts 2.637	Suitability
Forensic science technicians	2.647	

Which Economies Can Best Benefit from Machine Learning?


 \sim

15

Ì

< Back		All Jobs Aver	rage Comparis	son 📴 Download		2	3		4	
USA SML 3.040					Managers, All Other		Office	High Suitability Waiters and Waitresses		
Summary Machine Learning	3.040	Registered		Stock Clerks	Combined Food Perparation		Clerks, General Laborers and Freight,	and /	Auditors	
Prediction Image: Construction Image: Construction	2.456 3.200	Nurses		and Order Fillers	and Serving Workers, Including Fast Food	Cashiers	Stock, and Material Movers, Hand	Genera and Operat Manag	ions Personal	
T Text Data	3.669				🔳 Radio	ologists	SML 2	.830		
Image Data	3.030	Business				nd Surgeons, All C	rgeons, All Other		Maintenance an Repair Workers,	
🗩 Chatbot	3.100	Operations	Operations and Surgeons, All Other		OCCUPATIONAL TASKS SI Operate on patients to treat conditions.			SCORE 2.533	General	
L Structured	3.384	Specialists, All Other		384 Specialists,		Explain medi	ical procedures or test results to amily members.		2.533	ntary Fabricators, All tother, Including tion
TOP 5	SML SCORE				Treat medica	al emergencies.		2.700	Police and	
Switchboard operators	3.553				Analyze test diagnosis or	data or images to treatment.	inform	3.000	Sheriff's Patrol Officers	
 Postal service mail carriers Meter readers, utilities 	3.496					e test or assessme	ent results to	3.033		
Word processors and typists	3.469	Customer			medical professionals.					
Telemarketers	3.462	Service Representatives	Retail Salesper	Computer Occupations, All Other	Laboratory Technologists and Technicians	Bookkeeping, Accounting, and Auditing Clerks	isors of and Cooks	Teacher Assistants	Other	

Regions vary in ML exposure

SML Standardized Score by Metro Area

The New Grand Challenge

- Digital technologies will continue to accelerate
- Our skills, organizations and institutions are lagging
- Business as usual won't solve this problem

How can we reinvent our economy and society to keep up with accelerating technology?

- > New Metrics
- > New Skills
- > New Business Processes
- New Institutions

To Learn More:

AI & Future of Work Resources: <u>https://digitaleconomylab.stanford.edu/AlfowResources</u>

Measuring the Economy: <u>https://www.measuringtheeconomy.org/</u>

Stanford Digital Economy Lab: https://digitaleconomy.stanford.edu/

Erik Brynjolfsson: https://www.brynjolfsson.com/

Stanford University Iuman-Centered Artificial Intelligence