

International conference on AI in Work, Innovation, Productivity and Skills 1-5 February 2021

Session 5: The OECD AI Systems Classification Framework: progress, challenges & way forward

- Part 1: Overview of the OECD's work on AI
- Part 2: Introducing the classification framework
- Part 3: Using the framework on actual AI systems
- Part 4: Applying the framework to jobs & skills
- Part 5: Discussion

International conference on AI in Work, Innovation, Productivity and Skills 1-5 February 2021

Session 5: The OECD AI Systems Classification Framework: progress, challenges & way forward

Part 1: Overview of the OECD's work on AI

- Part 2: Introducing the classification framework
- Part 3: Using the framework on actual AI systems
- Part 4: Applying the framework to jobs & skills

Part 5: Discussion

The OECD AI Principles

10 PRINCIPLES FOR TRUSTWORTHY AI

Value-based principles

- Socio-economic & environmental impacts
- Human-centred values and fairness
- Transparency, explainability
- Robustness, security, safety
- o Accountability

Recommendations for policy makers

- \circ Investing in research
- Data, compute, technologies
- Enabling policy environment
- \circ Jobs, skills, transitions
- \circ International cooperation

Complementary expert groups – different memberships & mandates

The OECD network of experts on AI (ONE AI)

- multi-disciplinary and multi-stakeholder
- •200+ AI experts from national governments, IGOs and the EC, business, civil society, academia, trade unions.
- advises the OECD & facilitates collaboration with other initiatives.

ONE AI is divided into several Working Groups

10 PRINCIPLES FOR TRUSTWORTHY AI

Values-based principles

- Socio-economic & environmental impacts
- Human-centred values and fairness
- Transparency, explainability
- o Robustness, security, safety
- o Accountability

National Policies

- Investing in research
- Data, compute, technologies
- Enabling policy environment
- \circ Jobs, skills, transitions
- o International cooperation

WG TAI: Tools for Trustwort hy Al

WG PAI: National AI policies

Δ

Compute

Why classify Al systems?

93.3 GDT

(adhesin tip)

T1037 / 6vr4 90.7 GDT (RNA polymerase domain)

Experimental resultComputational prediction

reduced noise in normal regions (everywhere else)

tumo

International conference on AI in Work, Innovation, Productivity and Skills 1-5 February 2021

Session 5: The OECD AI Systems Classification Framework: progress, challenges & way forward

Part 1: Overview of the OECD's work on AI

Part 2: Introducing the classification framework

- Part 3: Using the framework on actual AI systems
- Part 4: Applying the framework to jobs & skills
- Part 5: Discussion

Overview of the classification framework

A user-friendly framework to navigate policy implications of different *types* of AI systems

4 key dimensions:

- 1. Context, including sector (healthcare, etc.), impact and scale
- 2. Data and input, including data collection, personal nature of data
- 3. Al model (technologies), incl. model type and model building process
- **4.** Task and output, incl. AI system's task (e.g., recognition, personalisation, etc.) and action autonomy

Dimension: 1) CONTEXT

A user-friendly framework to navigate policy implications of different *types* of AI systems

4 key dimensions:

- 1. Context, including sector (healthcare, etc.), impact and scale
- 2. Data and input, including data collection, personal nature of data
- 3. Al model (technologies), incl. model type and model building process
- **4. Task and output**, incl. AI system's task (e.g., recognition, personalisation, etc.) and action autonomy

Dimension: 1) CONTEXT

Properties / Attributes	Description
Industrial sector	 Using: International Standard Industrial Classification of All Economic Activities (ISIC REV 4) to identify sector and compare to cross-country data
Deployment impact / scale / impacted stakeholders	 Breadth of deployment (e.g. pilot, company level) Al system maturity Stakeholders impacted (e.g. workers, consumers) For-profit or non-profit use
Benefits and risks to individual rights and well-being	 Impacts on human rights (e.g. criminal sentence) Impact on well-being (e.g. job quality) Low-risk contexts (e.g. restaurant recommendation)
Benefits and risks to critical functions / activities	 Al system serving in critical sector or infrastructure (e.g., energy, transport, water, health) Al system serving critical functions in a sector
Related Consideration (To be developed)	 Users of AI system (e.g. expert vs. non-expert)

Dimension: 2) DATA AND INPUT

A user-friendly framework to navigate policy implications of different *types* of AI systems

4 key dimensions:

- 1. Context, including sector (healthcare, etc.), impact and scale
- 2. Data and input, including data collection, personal nature of data
- 3. Al model (technologies), incl. model type and model building process
- **4. Task and output**, incl. AI system's task (e.g., recognition, personalisation, etc.) and action autonomy

Dimension: 2) DATA AND INPUT

Properties / Attributes	Description
Data and input collection/origin	 Data collection (by sensing or perceiving) Data provenance (level of awareness) Dynamic nature of data (e.g. real-time), Scale of data set
Data and input structure	 Structure of data (e.g. structured vs. unstructured data), Data encoding (standardised format vs. non-standardised format)
Data and input domains	 3 domains: Proprietary data, Public data, Personal data Taxonomy of personal data (for assessing the risk to privacy)
Data quality	 Representativeness Adequate sample rate, Data noise, Missing values and outliers
Data qualification	 Guarantee the appropriate data as input to solve a specific problem (note: this is different from data quality)
Related Consideration (To be developed)	 Implication for privacy and fairness (e.g. sensitive data) Implication for robustness (e.g. quantity of data vs. the number of variables in a model)

Dimension: 3) AI MODEL

A user-friendly framework to navigate policy implications of different *types* of AI systems

4 key dimensions:

- 1. Context, including sector (healthcare, etc.), impact and scale
- 2. Data and input, including data collection, personal nature of data
- 3. Al model (technologies), incl. model type and model building process
- **4. Task and output**, incl. AI system's task (e.g., recognition, personalisation, etc.) and action autonomy

Dimension: 3) AI MODEL

Properties / Attributes	Description
Al model type	 Symbolic AI models Statistical AI models Hybrid AI models (majority of systems live here)
Acquisition of capabilities / model building	Acquisition from knowledge: symbolic AIAcquisition from data: machine learning
Related Consideration	 Fairness: Choice of AI model, input datasets, and tasks all relate to downstream issues of (potential) bias. Accountability: This is determined by how humans interact with the model (are they 'on the loop' or 'in the loop'). Robustness: Need for mechanism to ensure the robustness of modern ML systems (e.g. adversarial defenses, fail-safe procedures, formal verification) Performance: Different models have different performance characteristics

Dimension: 4) TASK AND OUTPUT

A user-friendly framework to navigate policy implications of different *types* of AI systems

4 key dimensions:

- 1. Context, including sector (healthcare, etc.), impact and scale
- 2. Data and input, including data collection, personal nature of data
- 3. Al model (technologies), incl. model type and model building process
- **4. Task and output**, incl. the AI system's task (e.g., recognition, personalisation, etc.) and action autonomy

Dimension: 4) TASK AND OUTPUT

Properties / Attributes	Description
Task of the system	 Recognition, Event detection, Forecasting, Personalisation, Interaction support, Goal-driven optimization, Reasoning with knowledge structures
Action of the system (autonomy level)	 High autonomy (human-out-of-the-loop) Medium autonomy (human-on-the-loop) Low autonomy (human-in-the-loop)
Combining tasks and actions into composite systems	 Specific policy consideration for: Autonomous systems (e.g. driverless vehicle) Control systems (e.g. robotics and factories) Content generation (e.g. misinformation, deep fake)
Related Consideration (To be developed)	 Robustness and security (e.g. expected performance and reliability information) System operator (e.g. role of evaluator) Degree of automation (e.g. job displacement)

Part 5:

International conference on AI in Work, Innovation, Productivity and Skills 1-5 February 2021

Session 5: The OECD AI Systems Classification Framework: progress, challenges & way forward

Part 1: Overview of the OECD's work on AI

- Part 2: Introducing the classification framework
- **Part 3:** Using the framework on actual AI systems
- Part 4: Applying the framework to jobs & skills

Discussion

Disclaimer : the following slides use existing commercial products for purely theoretical purposes. The OECD classification framework has not coordinated with these products' owners. As a result, there may be inaccuracies based on the authors' read of the publicly accessible materials.

Next: Putting the framework in practice

Sector of deployment (e.g., Transportation and storage, human health and social work activities, Education)

Critical function

(e.g., health, safety, and security of citizens; essential economic and societal services)

System users (e.g., AI-expert vs. non-AI expert user)

1

2

3

4

Data collection

(e.g., humans, automated, system experience)

Data domain (e.g., proprietary, public, personal)

Data structure

(e.g. structured, semi-structured, unstructured)

Acquisition of capabilities

(e.g., learn from people vs. provided data vs. system experience)

AI model type

(e.g. supervised, probabilistic, symbolic)

System task (e.g., recognition, personalization, goal-driven optimization)

Level of action autonomy (e.g., high (human out-of-the-loop), medium (human on-the-loop), low (human-in-the-loop)

Applying the Framework to sustainable development

Applying the Framework to sustainable development

Development practitioners need a decision-making framework to determine whether systems can effectively support development objectives in order to invest.

This framework, when used responsibly, can help in

- Mapping value propositions of Al systems to development outputs.
- Reflect on potential challenges and risks (in design, implementation, impacts)
- Improving regulation, tech policy and **impact**.

AI in sustainable development

Sector of deployment Education

Critical function No

System users Non AI expert amateur (students)

Data collection

Collected by humans and automated tools

2 Data domain Personal

Data structure Structured

Acquisition of capabilities

3

From data

AI model type Generative, semi-supervised, non-probabilistic

System task Personalization, interaction support

Level of action autonomy Medium – provides recommendation for human decision execution

Example ID

Name: M-Shule

Link: here

Short description: Delivers personalized lessons via SMS based on curriculum standards and student skills and abilities. Tracks and analyses performance to provide recommendations.

Lessons & activities adapted from the local curriculum.

tailored in an adaptive. learning engine

...engaged with through an SMS interface

AI in hiring processes

Sector of deployment Administrative and support service activities

Critical function No

System users Amateur (job candidate and HR personnel)

Data collection Collected by automated tools

Data domain Proprietary, proprietary personal

Data structure Unstructured

Acquisition of capabilities

3

4

2

1

From data

AI model type Discriminative, semi-supervised, probabilistic

System task Personalization, interaction support, recognition

Level of action autonomy Medium – provides recommendation for human decision execution

Example ID

Name: myInterview

Link: here

Short description: conducts smart video interviews, picking questions based on company needs, and scans all interview videos to create curated interview "playlists" for companies to review.

AI in manufacturing

AI in critical sector applications

Sector of deployment Public administration and defense

Critical function Yes

System users Practitioner who is not an AI expert (police)

Data collection

Collected by automated tools

Data domain Public

Data structure

Semi-structured

Acquisition of capabilities From data augmented by human-encoded knowledge

AI model type

System task Recognition

3

1

2

Level of action autonomy Medium - provides a prediction for human decision execution.

Example ID

Name: ShotSpotter

Link: here

Short description: ShotSpotter is a technology deployed in 85 cities which uses a combination of acoustic software microphones and to automatically listen for gunfire and, if it thinks it has heard gunfire.

AI applied to criminal justice

Sector of deployment Public administration and defense **Critical function**

1

Yes

System users Practitioner who is not an AI expert (justice professionals)

Data collection

Collected from human inputs

2

Data domain Personal

Data structure Structured

Acquisition of capabilities

From data and human-encoded knowledge

AI model type Generative, supervised learning, non-probabilistic

3

System task Forecasting, recognition

Level of action autonomy Medium - provides a prediction for human decision execution.

Example ID

Name: ML algorithms for predicting juvenile recidivism

Link: here

Short description: Tool that generates risk assessments based on information on defendant demographics and criminal history.

International conference on AI in Work, Innovation, Productivity and Skills 1-5 February 2021

Session 5: The OECD AI Systems Classification Framework: progress, challenges & way forward

- Part 1: Overview of the OECD's work on AI
- Part 2: Introducing the classification framework
- Part 3: Using the framework on actual AI systems
- Part 4:Applying the framework to jobs & skillsPart 5:Discussion

Using the framework as a single reference point for all stakeholders, policymakers: policy considerations, businesses: Al-related business decisions.

Using the framework as a single reference point for all stakeholders, policymakers: policy considerations, businesses: Al-related business decisions.

CONTEXT

Labor marketrelated considerations, e.g.:

- policymakers: pro -active policies to control relative prices of labor/ capital,
- businesses: hiring decisions based on relative prices of labor/capital, changing working conditions.

DATA AND INPUT

Labor market-related considerations, e.g.:

- **policymakers**: review of education system to accommodate for AI innovation
- **businesses**: need for new jobs (e.g. data scientists, (re)training of employees

TASK AND OUTPUT

Labor market-related considerations, e.g.:

- **policymakers**: proactive policies to address potential job displacement,
- **businesses**: decisions on what tasks to automate and to what degree.

AI MODEL

Labor market-related considerations, e.g.:

- policymakers: wellfunded social protection systems, policies ensuring transparency and robustness of AI systems,
- **businesses**: buildin g AI skills, attracting talent.

- Al is the latest wave of innovation so history can help:
 - as a general-purpose technology, AI threatens (aspects of) jobs in all segments of economy,
 - it is difficult to anticipate impacts due to differences to previous waves of innovation.

- Al is the latest wave of innovation so history can help:
 - as a general-purpose technology, AI threatens (aspects of) jobs in all segments of economy,
 - It is difficult to anticipate impacts due to differences to previous waves of innovation.
- Much depends on how we control Al innovation:
 - in perfectly competitive markets innovation would make everyone better off (Pareto-improving).
 - o but markets imperfect and structured by regulation,
 - market-structuring, regulations and market imperfections crucially determine the benefit society derives from innovation
 - Pareto-improving innovation is only possible with redistributive regulation (otherwise inequality rises/welfare decreases and Al will only amplify those effects).

- Economy and market-structuring regulation form an interconnected system:
 - ex post redistribution/piecemeal regulatory approaches merely symptomatic/futile treatment,
 - o may even upset economic balance.

Key issue: Controlling technological innovation's impact in imperfect markets

- Economy and market-structuring regulation form an interconnected system:
 - ex post redistribution/piecemeal regulatory approaches merely symptomatic/futile treatment,
 - o may even upset economic balance.

A truly efficient solution only by systematic revamp of entire system of rules structuring economy:

- o tax policies, competition laws, IPR, financial regulation,
- o corporate governance, international trade, monetary policy,
- o labor market-related rules, structural discrimination,
- o globalization, innovation, demographics, climate change...

Key issue: Controlling technological innovation's impact in imperfect markets

 Globalization poses extra challenge: only internationally coordinated regulatory efforts efficient (domestic approaches may create inefficiencies/conflicts).

- Globalization poses extra challenge: only internationally coordinated regulatory efforts efficient (domestic approaches may create inefficiencies/conflicts).
- Al classification framework could serve as common benchmark helping international/multi-stakeholder coordination.

Another framework for classifying Al according to labour market impact

Destructive and Transformative Effects of AI on Jobs

Source: based on Fossen and Sorgner (2019)

How is it related to the AI Systems Classification Framework?

- Matching AI System's tasks with job-specific tasks (e.g. image recognition, event prediction)
- Al System's level of autonomy may create destructive effects (depends on the relevance of the task in a job).
- Effects of AI on labour markets may depend on the context (e.g., industry, region, formal institutions)

International conference on AI in Work, Innovation, Productivity and Skills 1-5 February 2021

Session 5: The OECD AI Systems Classification Framework: progress, challenges & way forward

- Part 1: Overview of the OECD's work on AI
- Part 2: Introducing the classification framework
- Part 3: Using the framework on actual AI systems
- Part 4: Applying the framework to jobs & skills
- Part 5: Discussion

THANK YOU

Visit the **OECD AI Policy Observatory (OECD.AI)** for more, including:

- The OECD programme on Work, Innovation, Productivity & Skills: <u>oecd.ai/wips</u>
- The AI Wonk blog: <u>oecd.ai/wonk</u>
- Network of Experts: <u>oecd.ai/network-of-experts</u>
- Trends and data: <u>oecd.ai/trends-and-data</u>
- Latest research in AI policy: <u>oecd.ai/policy-areas</u>
- Database of country AI initiatives: <u>oecd.ai/dashboards</u>